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Disappearance Conditions of
Stress Singularities for
Anisotropic Bimaterial Half-Plane
Wedges Under Antiplane Shear
Based on the anisotropic elasticity theory and Lekhnitskii’s complex potential functions,
the analytical eigenequations of anisotropic bimaterial half-plane wedges under anti-
plane shear are derived in brief forms. The boundary surfaces of half-plane wedges can
be combinations of free and/or clamped edges. The disappearance conditions of stress
singularities can be obtained directly from the derived eigenequations, which can be
applied to improve the safety of the structures. The interesting phenomenon on the peri-
odic appearance of the singularity orders is proposed and discussed as well.
�DOI: 10.1115/1.1989356�

1 Introduction
In elastic wedge structures, the stresses may be singular due to

geometric and/or material discontinuities. This singularity stress is
responsible for the initiation of delamination in composite struc-
tures. For the antiplane problem, Ma and Hour �1� used the Mellin
transform to study the antiplane stress singularities of anisotropic
wedges. They found that the order of stress singularity is real for
a general anisotropic bimaterial wedge of the antiplane problem
subjected to different boundary conditions �i.e., free-free,
clamped-clamped, and free-clamped�. The problems of cracking
are also extensively investigated. For example, Ma and Hour �2�
studied antiplane problems in anisotropic materials with an in-
clined crack terminating at a bimaterial interface. Shahani �3� in-
vestigated the anisotropic finite wedge under antiplane deforma-
tion. Pageau et al. �4� obtained the numerical antiplane singular
stress field of anisotropic multimaterial wedges and junctions. Re-
cently, Xie and Chaudhuri �5� proposed an eigenfunction ap-
proach for analyzing the three-dimensional asymptotic stress field
of a symmetric bimaterial wedge under antiplane shear loading. A
similar problem with an asymmetric bimaterial pie-shaped wedge
has been analyzed by Chiu and Chaudhuri �6�.

The disappearance of stress singularities is very important in
engineering practice. It can be applied to improve the safety of the
structures. Hu et al. �7� studied the disappearance conditions of
stress singularities near the vertex of bonding edges in single-lap
joints. Wu �8� designed the singularity-free bimaterial compo-
nents. They were focused on isotropic material. For anisotropic,
Chue and Liu �9� used the numerical contours to obtain the dis-
appearance condition of stress singularities in composite lami-
nates. However, the brief formulation for disappearance condi-
tions of stress singularities will be more practical in an
engineering application.

This paper uses the Lekhnitskii’s formulations �10� to derive
generalized eigenequations, which govern the antiplane stress sin-
gularity orders for the anisotropic bimaterial half-plane wedge

�� ,180 deg−�� shown in Fig. 1. This structure usually appears in
multilayer laminate with a chamfer angle on the edge. In addition,
the material principal axes x̂k axis �k=1,2� are assumed to lie in
the x-y plane and makes an angle �k �−90 deg��k�90 deg�
with the positive x axis.

Two interesting points related to the stress singularity order will
be discussed in detail. First, the disappearance condition of the
stress singularity can be obtained directly from the derived
eigenequations. It is very important and useful for designing the
structures to improve the safety of the structures. Second, the
period of the singularity orders varied by fiber orientation is pro-
posed and discussed analytically in detail.

2 Formulations of a Two-Bonded Anisotropic Wedge
in Antiplane Fields

2.1 General Formulation. Consider two anisotropic wedge
occupied regions �1 and �2 with wedge angle � and 180 deg
−�, respectively, that they are perfectly bonded along the com-
mon edge �Fig. 1� and subjected to longitudinal shear loading.
Note that the wedge angle � of region �1 is kept in the interval
0 deg���180 deg. Assume that the x-y plane is a symmetric
plane and the inplane and antiplane stress fields are decoupled.
For the antiplane problem, only the stress �yz

�k�, �xz
�k�, and displace-

ment w�k� are considered, in which the superscript k denotes the
region �k. The strain components are related to the stresses by

�yz
�k� = s44

�k��yz
�k� + s45

�k��xz
�k�

�xz
�k� = s45

�k��yz
�k� + s55

�k��xz
�k� �k = 1,2� �1�

where sij
�k� are the components of elastic compliance matrix re-

ferred to global xyz-coordinate system. Based on Lekhnitskii’s
formulations �10�, the stresses and displacement corresponding to
cylindrical coordinates �r ,�� can be expressed in terms of com-
plex function �k�zk� as follows:

��z
�k� = − 2 Re��cos � + 	k sin ���k��zk�� �2�

w�k� = 2 Re�tk�k�zk�� �3�

where

zk = x + 	ky = r�cos � + 	k sin �� � r 
k��� �4�

1To whom correspondence should be addressed.
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	k =
s45

�k� + i�s44
�k�s55

�k� − �s45
�k��2�1/2

s55
�k� �5�

and

tk = s45
�k� − s44

�k�/	k = i�s44
�k�s55

�k� − �s45
�k��2. �6�

Thus, the anisotropic antiplane problems are reduced to the deter-
mination of complex function �k�zk�.

In order to evaluate the singular stress behavior at the apex, the
complex stress potentials �k�zk� are expanded in following forms:

�k�zk� = c1kzk
� + c2kzk

�̄ �k = 1,2� �7�

where c1k and c2k are unknown complex constants and � is a
complex eigenvalue to be determined. Substituting Eqs. �4� and
�7� into Eq. �2�, the stress can be expended in the following form:

��z
�k� = − �c1k�r�−1
k

� + c2k�̄r�̄−1
k
�̄ + c̄1k�̄r�̄−1
̄k

�̄ + c̄2k�r�−1
̄k
��

�k = 1,2� . �8�
Based on the complex theory, Eq. �8� can be arranged as

��z
�k� = − 2 Re��r�−1�c1k
k

� + c̄2k
̄k
��� �k = 1,2� . �9�

Similarly, the displacement of Eq. �3� becomes

w�k� = 2 Re�r��c1ktk
k
� + c̄2kt̄k
̄k

��� �k = 1,2� . �10�

Here ��−1� with −1�Re��−1��0 is called the stress singu-
larity order and smaller � gives the stronger stress singularity.

The orthotropic materials with incline principal axes are used
frequently in composite structures. Therefore, consider that the
materials of wedges are orthotropic, in which the principal axes
are denoted as x̂k, ŷk, and ẑk for each region �k �k=1,2�. The ẑk

axis coincides with the z axis and the x̂k axis makes an angle
�k �−90 deg��k�90 deg� with the positive x axis. If ŝ44

�k� and ŝ55
�k�

are the elastic constants of orthotropic materials referred to x̂kŷkẑk

coordinates �ŝ45
�k�=0�, the elastic constants referred to xyz coordi-

nates are obtained by transformation

s44
�k� = ŝ44

�k� cos2�− �k� + ŝ55
�k� sin2�− �k�

s45
�k� = �ŝ44

�k� − ŝ55
�k��cos�− �k�sin�− �k�

s55
�k� = ŝ55

�k� cos2�− �k� + ŝ44
�k� sin2�− �k�

�k = 1,2� . �11�

Substituting Eq. �11� into Eq. �5�, 	k leads to

	k =
− �mk cos �k + i sin �k

�mk sin �k + i cos �k

�12�

where mk= ŝ44
�k� / ŝ55

�k�. For isotropic material, mk=1.
Therefore, the parameter tk defined in Eq. �6� can be reduced to

tk = i�ŝ44
�k�ŝ55

�k�. �13�

Based on Eqs. �4� and �12�, the function 
k��� is given by


k��� =
��1 − mk�sin�� − �k�sin �k + cos �� + i�mk sin �

mk sin2 �k + cos2 �k
.

�14�

2.2 Essential Character of Function �k„�…. In this paper,
most of the emphasis is placed on the study of the stress singu-
larity order. The stress ��z

�k� of Eq. �9� and displacement w�k� of Eq.
�10� applied on the boundary are used to derive the eigenequa-
tions. Consequently, the function 
k��� will play an extremely
important role in discussing the singularity behavior. A close ex-
amination on the nature of function 
k��� is necessary.

Let the absolute value and principal argument of 
k��� be de-
noted as Rk��� and 
k���, respectively. They are given below

Rk��� � �
k���� =��1 + mk� + �1 − mk�cos�2�� − �k��
�1 + mk� + �1 − mk�cos�2�k�

�15�

Tan�
k���� � Tan�Arg 
k���� =
�mk sin �

�1 − mk�sin�� − �k�sin �k + cos �
.

�16�

The principal argument 
k��� depends on mk and �k and is a
function of �. While the interval of angle � is defined between 0
deg and 180 deg, then 0�
k����180 deg. The value of 
k���
with −180 deg���0 deg can be obtained from 
k��� with
0 deg���180 deg.

Figures 2 and 3 plot the variations of the principal argument

k��� with �k at different � and mk, respectively. From these
figures or Eq. �16�, some conclusions can be made as follows:

1. For all �k, Fig. 3 shows that the argument 
k���→ 0 deg as
�→ 0 deg and 
k���→ 180 deg as �→ 180 deg.

2. As the parameter mk �=ŝ44
�k� / ŝ55

�k�� approaches infinity or zero,
the difference between extreme values of 
k��� becomes
larger �i.e., �180 deg�. It means that the principal argument
depends strongly on �k.

3. While the material is degenerated to isotropic material �i.e.,
mk=1�, 
k���=� for all �k.

4. The argument 
k��� in Fig. 2 is a period function of �k. Its
period is 180 deg. However, only the half period �� /2
-90 deg���k�� /2 is needed. For example, as �=60 deg,
the argument 
k��� in −60 deg��k�30 deg is considered.
The other values of 
k��� can be deduced from this half
period. Consequently, for given mk, it can be proved that the
principal argument 
k��� of Eq. �16� remains unchanged
when the fiber orientation �k is replaced by ��−�k�, i.e.,


k����k
= 
k����−�k

. �17�

This conclusion is very important in discussing the repeated
occurrence of the singularity order.

In the following section, the application of these relations to
anisotropic bimaterial wedges will be discussed in detail.

2.3 Half-Plane Wedges „� ,180 deg−�…. Consider the case
that the half-plane wedges perfectly bonded along the common
edge �i.e., x axis in Fig. 1�. Using Eqs. �9� and �10�, the continuity
conditions of the stress ���z

�1��r ,0�=��z
�2��r ,0�� and displacement

�w�1��r ,0�=w�2��r ,0�� along the interface will result in the follow-
ing relations:

Fig. 1 Geometry of two dissimilar anisotropic materials for
half-plane wedge
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c11 + c̄21 − c12 − c̄22 = 0 �18�

c11 − c̄21 − � c12 + � c̄22 = 0. �19�

Here the relations 
1��=0�=
2��=0�=1 from Eq. �14� have been
used. The parameter � is the ratio of the elastic constants

� = �ŝ44
�2�ŝ55

�2� � ŝ44
�1�ŝ55

�1�. �20�

While the materials of two wedges are the same with different
fiber orientation, �=1.

The following four combinations of boundary conditions are

considered:

2.3.1 Free-Free Boundary Conditions. Both of the edges are
traction free, i.e., ��z

�1��r ,�=��=0 and ��z
�2��r ,�=�−��=0. Based

on Eq. �9�, they reduce to the relations, respectively,

c11�
1����� + c̄21
1���� = 0 �21�

c12�
2�� − ���� + c̄22
2�� − ��� = 0. �22�

Owing to Eqs. �15� and �16�, the functions 
1��� and 
2��−�� can
be expanded as follows:

Fig. 2 The variations of �k„�… with fiber orientation �k when „a… �=60 deg; „b… �=90 deg; „c… �=120 deg
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1��� = R1���ei
1��� �23�


2�� − �� = cos�� − �� + 	2 sin�� − �� = − 
2���

= R2���ei�
2���−��. �24�
Equations �18�, �19�, �21�, and �22� yield four linear homogeneous
equations with unknowns c11, c̄21, c12, and c̄22. They can be re-
written in the following matrix form:

	
ei�
1��� e−i�
1��� 0 0

1 1 − 1 − 1

1 − 1 − � �

0 0 ei�
2���−��� e−i�
2���−���

	

c11

c̄21

c12

c̄22


 = 0.

�25�

For nontrivial solutions of cij �i , j=1,2�, the determinant of the
matrix must vanish. It reduces to the following eigenequation:

tan���
2��� − ���cot��
1���� = � . �26�

The stress singularity order ��−1� depends on 
k��� and �.
From the essential character of 
k��� �i.e., Eq. �17��, the singu-
larity order will not be changed if the fiber orientation ��1 ,�2� is
replaced by ��−�1 ,�−�2�, ��−�1 ,�2�, or ��1 ,�−�2�. The nu-
merical results of the singularity order ��−1� are listed in Table 1

when �=60 deg. The material properties are assumed that ŝ44
�1�

=2ŝ55
�1�, ŝ44

�2� , =2ŝ55
�2�, and ŝ44

�1�= ŝ44
�2�. It is shown that the singularity

order −0.099 246 at ��1 ,�2�= �15 deg,80 deg� is equal to the sin-
gularity orders at ��−�1 ,�−�2�= �45 deg,−20 deg�, ��−�1 ,�2�
= �45 deg,80 deg�, and ��1 ,�−�2�= �15 deg,−20 deg�. The re-
peated occurrence of stress singularity orders can be observed. It
is useful to select the multiple fiber orientation for structure design
under an invariable singularity order.

In most engineering applications, both of the materials are usu-

Fig. 3 The variations of �k„�… with fiber orientation �k when „a… mk=10; „b… mk=2; „c… mk=0.5
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ally the same but with different fiber orientations �i.e., ŝ44
�1�= ŝ44

�2�,
ŝ55

�1�= ŝ55
�2�, �1��2�. It leads to m1=m2, �=1 but 	1�	2. Substi-

tuting �=1 into Eq. �26�, the eigenequation can be simplified as

sin��
2��� − 
1��� − ���� = 0. �27�
The solution is given by

� =
n�


2��� − 
1��� − �
�n = integer� . �28�

It is important to examine the disappearance conditions of
stress singularity. The values of �
2���−
1����, ranging from −�
to �, can be obtained from Eq. �16� while m1 �or m2, since m1
=m2�, �k, and � are given. The interesting values of ��−1� are in
the interval −1��−1�0. Figure 4 plots the variations of ��
−1� with 
2���−
1���. As 
2����
1���, the stress field is sin-
gular. The strongest stress singularity occurs when 
2���
−
1���=−� and the order is −0.5. Based on Fig. 2 or Eq. �16�,
the case of �−1=−0.5 exists in a combination of �1=� /2 and

�2=� /2−� /2 for mk
� or �1=� /2−� /2 and �2=� /2 for mk

0. On the other hand, the disappearance conditions of stress
singularity is derived as


2��� � 
1��� . �29�

By using Eq. �16�, the condition for no-singular stress of Eq. �29�
can be expressed in the following form:

�1 − m1�sin�� − �1�sin �1 � �1 − m1�sin�� − �2�sin �2. �30�

This inequality will be discussed in three parts:

�1� If m1=m2�1, Eq. �30� can be simplified as follows:

sin�� − �1 − �2�sin��1 − �2� � 0. �31�

The results for all combinations of �1 and �2 are presented
in Fig. 5�a�. The horizontal and vertical axes plotted with
dotted lines are denoted as �1 and �2, respectively. This
plot can be divided into four regions and four lines ��1
��4� to be discussed. For region 1 �bonded by points A, B,
O, and H�, there are 0 deg��1−�2�180 deg, 0 deg��1
+�2�180 deg, and 0 deg���180 deg. These lead to
sin��1−�2��0 and −180 deg��−�1−�2�180 deg. In
order to create a no-singular stress field, the condition
sin��−�1−�2��0 based on Eq. �31� is needed. Hence, the
inequality is expanded as follows

0 � � � �1 + �2 for region 1 in Fig. �5�a��. �32�

It means that if the combination of �1 and �2 locates in
region 1, the designer can cut the wedge angle according as
Eq. �32� to improve the safety of structures. For example, if
the material properties and principal orientations are as
m1=m2=2, �1=60 deg, and �2=20 deg, the wedge angle
of region �1 need to be cut in the interval 0 deg��
�80 deg for avoiding the stress concentration. The order
��−1�=0.027 914 in Table 1 with ��1 ,�2�
= �90 deg,80 deg� is an example of a nonsingularity case.
The case ��1 ,�2�= �30 deg,−20 deg�, which does not sat-
isfy Eq. �32�, causes singular stress field with order ��
−1�=−0.112 454. Similarly, we can obtain the disappear-
ance condition for the other three regions as

�1 + �2 � � � 180 deg for region 2 in Fig. �5�a��
�33�

0 � � � �1 + �2 + 180 deg for region 3 in Fig. �5�a��
�34�

�1 + �2 + 180 deg � �

� 180 deg for region 4 in Fig. �5�a��.

�35�

Since the condition of �1=�2 on the lines �1 and �3 re-
duces the wedge to a single-material half-plane, there is no
singularity regardless of angle � in this case. The line �2
denotes �1−�2 for �1�0 and �2�0. Taking these rela-
tions into Eq. �31�, it reduces to 0 deg���180 deg. It
means that the inequality of Eq. �31� is always satisfied for
arbitrary �. For the case on line �4 which denotes �1=
−�2 for �1�0 and �2�0, Eq. �31� is reduced to sin �
�0. Then � must to be 0 deg or 180 deg and the wedge
becomes a single-material half-plane.

�2� If m1=m2�1, the disappearance conditions for non-
singular antiplane stress can be obtained in the same way as
case �1� and are shown in Fig. 5�b�.

�3� If m1=m2=1, Eq. �30� is always satisfied. Since �=1 has
been assumed, the bimaterial wedges contain two identical
isotropic materials. The stress field is nonsingular.

Table 1 The antiplane stress singularity orders „�−1… of a 60
deg–120 deg wedge with free-free edges. „N.S.: no singularity….

Region �1 Region �2

�1 �2=−20 deg �2=80 deg

−90 deg 0.027914 �N.S.� 0.027914 �N.S.�
−75 deg 0.056733 �N.S.� 0.056733 �N.S.�
−60 deg 0.066612 �N.S.� 0.066612 �N.S.�
−45 deg 0.056733 �N.S.� 0.056733 �N.S.�
−30 deg 0.027914 �N.S.� 0.027914 �N.S.�
−15 deg −0.015647 −0.015647

0 deg −0.063162 −0.063162
15 deg −0.099246 −0.099246
30 deg −0.112454 −0.112454
45 deg −0.099246 −0.099246
60 deg −0.063162 −0.063162
75 deg −0.015647 −0.015647
90 deg 0.027914 �N.S.� 0.027914 �N.S.�

Fig. 4 The variations of stress singularity �−1 with �2−�1
„�=1…
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The eigenequation of Eq. �26� can also be used to study the
problem of isotropic bimaterial half-plane. Assume that the mate-
rials are different, i.e., ��1. Let ŝ44

�1�= ŝ55
�1�=s�1�, ŝ44

�2�= ŝ55
�2�=s�2�, and

m1=m2=1. From Fig. 2 or Eq. �16�, it gives 
1���=
2���=�.
Taking these into Eq. �26�, the eigenequation reduces as follow-
ing:

sin����
sin���2� − ���

= −
Qiso − 1

Qiso + 1
�36�

where Qiso=s�2� /s�1�. It is exactly the same as Eq. �23� in Ma and
Hour �1� if the wedge angles are �� ,180 deg−��.

2.3.2 Clamped-Clamped Boundary Conditions. Based on Eq.

�10�, the clamped-clamped boundary conditions �i.e., w�1��r ,��
=0 and w�2��r ,�−��=0� reduce to the relations, respectively,

c11
1
���� − c̄21
1���� = 0 �37�

c12�
2�� − ���� − c̄22
2�� − ��� = 0. �38�

Combining Eqs. �18�, �19�, �37�, and �38�, a system of four ho-
mogeneous equations is formed. It can be further simplified to the
following form:

tan���
2��� − ���cot��
1���� = �−1. �39�

Following the same procedure of Sec. 2.3.1, the singularity order
remains the same when the fiber orientations are changed from
��1 ,�2� to ��−�1 ,�−�2�, ��−�1 ,�2� or ��1 ,�−�2�.

If the bimaterials are the same, i.e., �=1, the eigenequation of
Eq. �39� is identical with Eq. �27�. Consequently, Eq. �28� is the
solution and Fig. 4 shows the singularity order graphically. The
disappearance conditions for non-singular antiplane stress are
shown in Fig. 5.

While the bonded wedges contain two different isotropic mate-
rials �m1=m2=1,��1�, the eigenequation of Eq. �39� is rear-
ranged as follows:

sin����
sin���2� − ���

= −
Qiso

−1 − 1

Qiso
−1 + 1

, �40�

where Qiso=s�2� /s�1�. Equation �40� is exactly the same as Eq. �38�
in Ma and Hour �1� if the wedge angles are �� ,�−��. Comparing
Eqs. �36� and �40�, the singularity orders with free-free boundary
surfaces are the same with clamped-clamped boundary surfaces
after interchanging two isotropic materials. This conclusion is in
agreement with Chiu and Chaudhuri �6�.

2.3.3 Clamped-Free Boundary Conditions. The characteristic
matrix is given by combining Eqs. �18�, �19�, �22�, and �37�. The
eigenequation becomes

tan���
2��� − ���tan��
1���� = − � . �41�

It can be observed again that the singularity order remains the
same when the directions of x̂k-axis locate at ��1 ,�2�, ��−�1 ,�
−�2�, ��−�1 ,�2�, or ��1 ,�−�2�.

While identical materials are used ��=1� with different fiber
orientations, Eq. �41� reduces to

cos��
2��� − 
1��� − ���� = 0. �42�

The root of Eq. �42� is

� =
�2n + 1��

2�
2��� − 
1��� − ��
�n = integer� . �43�

Figure 4 plots the variations of ��−1� with 
2���−
1���. The
dotted line represents the second root of ��−1�. The disappear-
ance condition of stress singularity can be expressed as the fol-
lowing form:

�/2 � 
2��� − 
1��� � � . �44�

According to Figs. 2 and 3, nonsingular stress field can be reached
by properly selecting the �1 wedge angle �, elastic constant ratio
mk and fiber orientations ��1 ,�2�. It shows while the parameter
mk�=ŝ44

�k� / ŝ55
�k�� is far from unity, the disappearance of stress singu-

larity is possibly reached. For example, the case of �=60 deg,
�1=−60 deg, �2=30 deg, and m1=m2=10 leads to 
2−
1
=122.58 deg−20.69 deg=101.89 deg. Then nonsingular stress
field is expected. Furthermore, if the materials have the same ori-
entations of principal axes �i.e., 
2���−
1���=0� which reduces
one-material half-plane wedge, the stress singularity order �−1 is
equal to −0.5 regardless of ŝ44/ ŝ55. The strongest singularity order
is �−1=−0.75 as 
2���−
1���=−�. There are two roots for

Fig. 5 The conditions of nonsingular antiplane stress field for
half-plane wedges with free-free or clamped-clamped edges
when „a… m1=m2>1 and „b… m1=m2<1
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−��
2���−
1����−� /2.
For a dissimilar isotropic wedge, the eigenequation Eq. �41� can

be simplified as follows:

cos����
cos��2� − ����

= −
Qiso − 1

Qiso + 1
. �45�

2.3.4 Free-Clamped Boundary Conditions. For free-clamped
boundary, Eqs. �18�, �19�, �21�, and �38� are used to form the
characteristic matrix. The eigenequation is given by

tan���
2��� − ���tan��
1���� = − �−1. �46�
The repeated occurrence of the stress singularity can also be ob-
served. While the same materials are used ��=1� with different
fiber orientations, the eigenequation leads to be identical with Eq.
�42�.

Consider that the materials 1 and 2 are two different isotropic
materials ���1�, that the eigenequation of Eq. �46� can be rewrit-
ten as follows:

cos����
cos��2� − ����

= −
Qiso

−1 − 1

Qiso
−1 + 1

, �47�

which is exactly the same as Eq. �28� in Ma and Hour �1� if the
wedge angles are �� ,�−��. Comparing Eqs. �45� and �47�, the
singularity orders with free-clamped boundary surfaces are the
same with clamped-free boundary surfaces after interchanging
two isotropic materials. It is coincident with Chiu and Chaudhuri
�6�.

3 Conclusions
This paper has derived the general closed-form solutions of

eigenequations for half-plane wedges under antiplane shear. The
boundary surfaces of half-plane wedges can be the combinations
of free and/or clamped edges. The disappearance conditions of
stress singularities are derived from the eigenequations, which can
be applied to improve the safety of structures. Some conclusions
can be made: �1� The antiplane stress singularity order remains

unchanged when the fiber orientations are changed from ��1 ,�2�
to ��−�1 ,�−�2�, ��−�1 ,�2�, or ��1 ,�−�2�; �2� As the material
properties of regions 1 and 2 are identical regardless of fiber ori-
entations, the stress singularity orders with free-free or clamped-
clamped edges are equal. This is also true for clamped-free and
free-clamped edges; and �3� The singularity orders with free-free
boundary surfaces are the same with clamped-clamped boundary
surfaces after interchanging two isotropic materials. This is also
true for clamped-free and free-clamped boundary conditions.
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On the Surface Stability of a
Spherical Void Embedded in a
Stressed Matrix
The linear stability analysis of the shape of a spherical cavity embedded in an infinite-
size matrix under stress has been performed when infinitesimal perturbation from sphe-
ricity of the rod is assumed to appear by surface diffusion. Developing the perturbation
on a basis of complete spherical harmonics, the growth rate of each harmonic Yl

m�� ,��
has been determined and the conditions for the development of the different fluctuations
have been discussed as a function of the applied stress and the order l of the
perturbation. �DOI: 10.1115/1.2165244�

1 Introduction
The shrintage of voids and the sintering of particles are key

phenomena in understanding the mechanical behavior of a number
of materials. For example, the study of sapphire fibers tested in
tension at low loading rate and elevated temperature �between 800
and 1500°C� shows that micron-sized pores embedded in the ma-
trix modify the strength and lifetime, since cracks have been
found to be generated from the surface of the pores �1�. Internal
pore channels have been also produced in undoped sapphire ma-
trix. Introducing sinusoidal perturbations of controlled amplitude
on their lateral surface, the different regimes of the pore channel
evolution by surface diffusion have then been investigated as a
function of the imposed initial wavelength of the perturbation �2�.
The modeling of void shrintage and sintering of spherical particles
has been carried out from numerical and theoretical points of view
assuming atoms are diffusing onto the surfaces �3,4�. The forma-
tion of cracks from spherical pores has been simulated as well as
the formation of spherical cavities from cylindrical pore channels.
The problem of the diffusion-controlled growth of a spherical par-
ticle in contact with its supersaturated melt has been studied by
Mullins and Sekerka �5� and a critical radius of the precipitate
above which the surface of the particle is unstable with respect to
shape perturbation has been determined.

The stability of the free surface of a non-hydrostatically
stressed solid has been first investigated by Asaro and Tiller �6�,
Grinfeld �7� and co-workers �8–11�. A critical wavelength has
been determined above which the surface is unstable. Later, the
effect of stress on the morphological evolution of different cylin-
drical structures such as pore channels, whiskers, or tubules has
been investigated when the diffusion mechanism is surface diffu-
sion �12–15�. It has been observed that the principal effect of
stress is to accelerate the growth rate of the shape fluctuations and
to reduce their periodicity. Under sufficiently high conditions of
the stress, the development by diffusion of an ellipsoidal shape
may be favored which can lead to the formation of crack-like
structures �12�. A perturbation method has also been used to de-
termine the stress near a smooth polygonal hole �16� and the mor-
phology of holes under stress in anisotropic matrix has been then
studied �17� as well as the morphology of growing spherical pre-
cipitates epitaxially stressed in a matrix when bulk diffusion is

activated �18,19�. In the case of a spherical germ growing in its
supersatured melt, the “memory” effect of stress generated by the
composition dependence of the lattice parameter of the solid has
been characterized �20�.

In this paper, the stability of the shape of a spherical cavity
embedded in an infinite-size matrix has been investigated with
respect to infinitesimal fluctuation of the sphere expanded on a
basis of spherical harmonics in the case where the matrix is sub-
mitted to a constant stress tensor at infinity �see Fig. 1 for axes�.
Following the method of Leo et al. �18,19�, the elastic strain and
stress tensors of relaxation have been determined to the first order
in the fluctuation amplitude near the cavity and the diffusion equa-
tion ruling the time evolution of each harmonic has been solved.
The possibility of development of an ellipsoidal shape and of
more complicated morphologies of the pore has then been inves-
tigated.

2 Morphological Instability of a Cavity Embedded in
an Infinite-Size Matrix Under Constant Stress

A spherical cavity of radius �=r0 is considered in an infinite-
size matrix of shear modulus � and Poisson’s ratio � �see Fig. 1�.
In the following, the calculation has been carried out using spheri-
cal coordinates. To model a number of experiments where the
materials are submitted to stress, it is assumed that at sufficiently
large distance from the cavity in the matrix, the medium is under
stress T0

lim
�r̃�→�

T0�r̃� = �T0 0 0

0 T0 0

0 0 T0
� �1�

where T0 is a constant. This initial stress satisfying the Cauchy
equation in the bulk

� · T0 = 0 �2�

must also fulfill the traction-free condition onto the surface of the
cavity �=r0

T0ñ = 0 �3�

with ñ the normal to the sphere pointing into the vacuum. The
resulting strain tensor E0 defined by

Eij
0 =

1

2
� �ui

0

�xj
+

�uj
0

�xi
	 �4�

with u0 the displacement field, also satisfies Hooke’s law
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Tij
0 = CijklEkl

0 �5�

where Cijkl are the elastic constants. Introducing Eq. �5� in Eq. �2�
leads to Navier’s equation

�2ũ0 +
1

1 − 2�
� �� · ũ0� = 0 �6�

The general expression of the displacement is ũ0�r̃�=ur
0�r�ẽr, with

ẽr the radial unit vector and ur
0 the radial displacement given by

�21�

ur
0�r� = �0r +

�0

r2 �7�

where �0 and �0 are constants that have determined with the help
of Eqs. �1� and �3�. The initial stress tensor satisfying to elasticity
Eqs. �2� and �3� finally reads

Trr
0 �r� = T0�1 −

r0
3

r3	 T��
0 �r� = T��

0 �r� = T0�1 +
r0

3

2r3	 . �8�

It can be observed that this initial stress which is constant at
infinity depends on r near the sphere �21�. The shape of the cavity
is then assumed to change under the action of diffusing atoms.
The set of equations describing the time evolution of the rod un-
der stress has been first recalled in the case where atoms are
diffusing onto the surface. The surface flux of atoms is defined
with the help of the chemical potential �22–24�

J̃S = −
DS	

kT
�S�c �9�

where DS is the surface diffusivity of atoms, k Boltzmann’s con-
stant, T the temperature, 	 the surface diffusivity of lattice sites,
and �c the chemical potential. In the case of a single component
matrix, the surface gradient of chemical potential is written as
�10,24�

�S�c = 
�S��� + Gelas� �10�

with 
 the atomic volume, � the surface energy in the reference
state, � the curvature of the surface in the reference state defined
for a normal pointing into the cavity, and Gelas the elastic energy
density onto the surface. The motion of the surface is controlled
by the accumulation of diffusing atoms �10�:

� r̃

�t
= − 
��S · J̃S�ñ �11�

The time evolution of the radial component of r̃ is finally written
as �10,23,24�

��

�t
= −

DS
2	�

kT
�1 + ����2�1/2�S

2�� +
Gelas

�
	 �12�

The above system of equations has been solved in the case
where a perturbation

���,t� = r0 + 
�t�Yl
m��,�� �13�

of the radius � of the cavity is assumed to appear and develops by
diffusion, where 
 is the amplitude of the fluctuation Yl

m, l assum-
ing integral values �l=2, . . . �. The case l=1 is not considered
since it does not break the symmetry of the cavity. When the
morphology of the cavity is modified, the solid undergoes elastic
strain Erel and stress Trel of relaxation satisfying Hooke’s law,
Tij

rel=CijklEkl
rel. This relaxation stress can be determined re-writing

the mechanical equilibrium Eq. �3� onto the perturbed surface

�T0 + Trel�ñ = 0 �14�

with

ñ = �− 1,



r0

�Yl
m

��
,




r0 sin �

�Yl
m

��
	

the outward normal to the sphere. The total strain and stress in the
matrix are then, respectively, defined as: Eij

tot=Eij
0 +Eij

rel and Tij
tot

=Tij
0 +Tij

rel, the resulting elasticity term in Eq. �10� being written as
Gelas=1/2Tij

totEij
tot. An elastic displacement can be derived from the

strain of relaxation,

Eij
rel =

1

2
� �ui

rel

�xj
+

�uj
rel

�xi
	 �15�

The equilibrium Eq. �14� satisfied by the relaxation stress has
been expanded to the first order in 
 amplitude

Trr
rel�r0,�,�� = 
 −

�Trr
0

�r



r=r0


Yl
m��,�� + ��
2� �16�

Tr�
rel�r0,�,�� = T��

0 �r0,�,��



r0

�Yl
m

��
��,�� + ��
2� �17�

The calculation of the elastic relaxation has been performed to
the first order in perturbation amplitude 
 using the method de-
veloped by Leo et al. �18,19�. The elastic displacement of relax-
ation can be taken of the form

ur
rel�r,�,�� = f�r�Yl

m��,��

u�
rel�r,�,�� = g�r�

�Yl
m

��
��,��

u�
rel�r,�,�� = g�r�

1

sin �

�Yl
m

��
��,�� �18�

with

f�r� = �1r−l−2 + �1r−l, g�r� = −
1

l + 1
�1r−l−2 + ��1r−l �19�

and

� =
4 − l − 4�

l�l + 3 − 4��
�20�

The general expression of strain tensor can then be easily derived
using Eq. �15�. The stress is determined with the help of Hooke’s
law. Using Eqs. �16� and �17�, the two constants �1 and �1 have
been found to be

�1 =
3


8�
r0

l+2T0
�l + 1��l2 − l + 2�1 − ���

l2 + l�1 − 2�� + 1 − �
�21�

Fig. 1 The profile of an initially spherical cavity of radius r0
embedded in an infinite-size matrix under stress is perturbed
with the help of a spherical harmonic Yl=5

m
„� ,�…
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�1 = −
3


8�
r0

l T0
l�l − 1��l + 3 − 4��

l2 + l�1 − 2�� + 1 − �
�22�

The elasticity term Gelas has been expanded to the first order in
perturbation amplitude 


Gelas =
9�1 − ��
8�1 + ��

T0
2

�
+

9�1 − ��l�2l2 − 3l + 1�
8�l2 + l�1 − 2�� + 1 − ��

T0
2

�r0

Yl

m��,��

+ ��
2� �23�
and the evolution Eq. �12� of the surface has been found to be

1




�


�t
=

DS
2	�

r0
4kT

�− �l − 1�l�l + 1��l + 2�

+
T0

2r0

��

9�1 − ��l2�l + 1��2l2 − 3l + 1�
8�l2 + l�1 − 2�� + 1 − �� � �24�

The time evolution of the lth order fluctuation is finally given by


�t� = 
0 exp� �

�0
t� �25�

with �0=kTr0
4 /DS
2	�, 
�0�=
0 and � the dimensionless growth

rate of the fluctuation defined by

��l� = − �l − 1�l�l + 1��l + 2� + K
9�1 − ��l2�l + 1��2l2 − 3l + 1�

8�l2 + l�1 − 2�� + 1 − ��
�26�

with the dimensionless control parameter K=T0
2r0 /��. The first

capillarity term in the growth rate expression has already been
calculated by Mullins �23�. This term is negative and favors the
decay of the perturbation. The second term coming from elasticity
is positive and favors the development of the fluctuation. In these
conditions, the development of the lth order fluctuation is favor-
able when ��l�1��0. The growth rate � of the fluctuation ap-
pearing on the surface of a cavity of initial radius r0=1 �m has
been plotted in Fig. 2 as a function of l for different values of T0
and for the following physical parameters corresponding to an
aluminum matrix �
1 J m−2, �=27 GPa, and �=0.33. It can be
observed that as the applied stress T0 increases, the number of
fluctuations destabilizing the shape of the cavity increases. It is
assumed that a given void undergoes morphological change when

at least the second order harmonic Y2
m develops that is for ��l

=2��0. In that case, the cavity develops an ellipsoidal shape
which has already been observed in many cases such as cylindri-
cal pore channels in a bi-axially stressed matrix �12� or spherical
precipitates embedded in a matrix �25�. The condition ��l=2�=0
has been used to define a critical stress Tc

l=2 for the cavity:

Tc
l=2 =

4

3�3
�7 − 5�

1 − �
���

r0
�27�

above which morphological change is expected to appear. This
stress has been found to be Tc

l=2=357.5 MPa for a cavity of radius
r0=1 �m embedded in an aluminum matrix. This threshold seems
to be coherent with those already determined for cylindrical �12�
and spherical cavities embedded in matrix �26� even if the applied
stresses differ from the initial stress considered in this work. As
the stress is increased the ellipsoidal shape can be destabilizing as
soon as spherical harmonics of higher order may appear. In that
case, a morphological change consisting in the development of a
number of harmonics takes place and the pore may grow crack
tips �13�. For the lth order fluctuation, the corresponding applied
stress Tc

l is defined by

Tc
l

Tc
l=2 =�3

2

1 − �

7 − 5�
��l + 2��l2 + l�1 − 2�� + 1 − ��

�1 − ��l�2l − 1�
�28�

Relation �28� holds for cavities of any radius, for example in
the case of aluminum ��=0.33� the critical stress above which the
fluctuation Y4

m may develop has been found to be Tc
l=4=1.04 Tc

l=2.
The critical stress above which Y6

m may appear is Tc
l=6=1.147 Tc

l=2.
It can be observed that when the initial stress T0 slightly increases
from the value Tc

l=2, the development of a number of harmonics
becomes favorable. A critical mode lc= �l*� such that ��l*�=0 can
be then defined, where �x� is the integer part of a number x. For
l� lc, the growth rate is positive and the corresponding fluctuation
may develop. This critical mode lc must satisfy the following
relation

8l*
3 + �8�3 − 2�� − 18K�1 − ���l*

2

+ �8�3 − 5�� + 9K�1 − ���l* + 16�1 − �� = 0 �29�

Fig. 2 Growth rate � versus l for different values of the applied stress T0
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Among all the possible modes, one is assumed to develop faster
than the other. This mode lM selected by surface diffusion is de-
termined differentiating the growth rate with respect to l. The
optimal mode lM has been found to be lM � ��l*� , �l*�+1� with l*
satisfying the following relation

− 32l*
7 + 2�27K�1 − �� − 8�7 − 8���l*

6 + 2�9K�8�2 − 11� + 3�

− 8�8�2 − 24� + 11��l*
5 + �9K�4�2 − 9� + 5�

− 32�10�2 − 13� + 5��l*
4 − 4�40�2 − 48� + 12

+ 9K�3�2 − 5� + 2��l*
3 + �16�5�2 − 6� + 2�

− 9K�4�2 − 9� + 5��l*
2 + 2�1 − ���9K�1 − ��

+ 8�3 − 5���l* + 16�1 − ��2 = 0 �30�
Since no analytic expression of the critical and optimal modes

can be derived from Eqs. �29� and �30�, their variations versus
applied stress T0 have been numerically estimated in Fig. 3 in the
case of a pore of initial radius r0=1 �m. It is observed that for a
given radius, the two integers lc and lM increase as the stress
increases. It is then assumed that as the applied stress increases,
the development of harmonics of higher order is favored leading
to the formation of a rough cavity. It can finally be emphasized
that the linear stability analysis presented in this paper only holds
for the early beginning of the surface evolution and does not pro-
vide any information on the long time evolution of the amplitude
of the roughness. It would be interesting to solve numerically the
time evolution Eq. �12� of the sphere and to determine in which
conditions of stress the development of high order perturbations
Yl

m �with l�2� can lead to the formation of cracks or to more
complex evolutions such as the distribution of smaller cavities.

3 Conclusion
The present analysis provides the theoretical basis for under-

standing the effect of stress on the morphological evolution of a
spherical pore embedded in a matrix. The major result of this
work is that the spherical shape of the pore found to be stable for
a stress-free matrix becomes unstable with respect to shape devia-
tion from sphericity of the cavity as soon as a stress greater than a
critical value is applied to the solid. The critical stress has been
then determined as a function of the order of the fluctuation. The
first fluctuation to appear by diffusion leads to the formation of an

ellipsoidal shape. As the stress is increased, the development of
more complex morphologies has been found to be favored on the
surface of the cavity.

The results obtained in this paper in the linear regime of the
surface evolution apply to any perturbation. The fluctuation can be
expanded on a basis of spherical harmonics Yl

m and the set of
linear equations detailed in this work can be used to describe the
time dependence of each coefficient of the shape development. It
is also believed that stress driven surface instability can play a
role during the sintering of powder compacts, the merging be-
tween two sufficiently closed spherical particles thus being
achieved by developing a roughness on each of the two surfaces.
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Flow Analysis and Modeling of
Field-Controllable, Electro- and
Magneto-Rheological Fluid
Dampers
This study combines a fluid mechanics-based approach and the Herschel-Bulkley consti-
tutive equation to develop a theoretical model for predicting the behavior of field-
controllable, magneto-rheological (MR), and electro-rheological (ER) fluid dampers. The
goal is to provide an accurate theoretical model for analysis, design, and development of
control algorithms of MR/ER dampers. Simplified explicit expressions for closed-form
solution of the pressure drop across a MR fluid valve are developed. The Herschel-
Bulkley quasi-steady flow analysis is extended to include the effect of fluid compressibility
to account for the nonlinear dynamic behavior of MR/ER fluid dampers. The advantage
of this model is that it only depends on geometric and material properties of the MR/ER
material and the device. The theoretical results are validated by an experimental study. It
is demonstrated that the proposed model can effectively predict the nonlinear behavior of
field-controllable fluid dampers. �DOI: 10.1115/1.2166649�

1 Introduction

Semi-active vibration control devices have received significant
attention because they can offer combined advantages of both
passive and active control systems �1,2�. One class of semi-active
control devices are field-controllable magneto-rheological �MR�,
and electro-rheological �ER�, fluid dampers. Activation of the
fluid in the damper causes a fast and dramatic change in the ap-
parent viscosity of the MR/ER fluid contained in the device. These
fluids can reversibly change from liquid to semisolid in millisec-
onds �3,4�. The result is a continuously variable controllable
damper.

MR fluid dampers can be battery-operated, require minimal
power, and have a broad range of capabilities, such as, the absence
of mechanical valve �for flow control� in the damper, and insen-
sitivity to impurities penetration �5�. Most importantly, a MR fluid
dampers can be considered as a “fail-safe” device, that is, they can
retain a minimum required damping capacity in the event of a
power supply or electronic system failures. Another words, in the
event of an electrical malfunction in the control hardware, the
device behaves as a passive damper �6,7�.

MR/ER fluid dampers demonstrate highly nonlinear behavior
due to the inherent non-Newtonian behavior of these fluids.
MR/ER fluids exhibit a strong field-dependent shear modulus and
a shear yield stress that resists the material’s flow until shear stress
reaches a critical value. Bingham plastic model is often used to
describe this phenomenon �5,8–10�. Based on the Bingham plastic
constitutive equation, a quasi-steady, field-controllable damper
model was developed to predict the damper’s performance
�11–15�. In this model, the fluid is assumed to be a Newtonian
fluid in post-yield regime, with a constant plastic viscosity as-

sumption. However, for cases where the fluid experiences post-
yield shear thinning or shear thickening, the assumption of con-
stant plastic viscosity is not valid.

Goodwin et al. �16� reported that the ER fluids prepared with
particles of low conductivity showed pseudo-plastic behavior with
power law index that was a function of conductivity. Mokeev et
al. �17� employed the continuous inhomogeneous dielectric me-
dium approximation to model Couette shear in high-concentration
ER fluid under electric field. They obtained dependence of the
apparent viscosity on the electric field and shear rate, which in the
limiting case is reduced into the Bingham plastic model. Shulman
and Korobko �18� considered refining the Bingham plastic model
into a four-parametric Casson-type model with coefficients de-
pending on electric field.

Stanway et al. �19� proposed a model to describe controllable
fluid damper behavior. An experimental technique of nonlinear
sequential filtering was used to estimate the parameters associated
with an nth-power velocity model for the damping mechanism.
Halsey et al. �20� and Felt et al. �21� studied a monodispers ER
fluid and a monodispers MR fluid, respectively. Both studies
found that the Bingham model does not accurately describe the
shear thinning observed in theses systems. In order to incorporate
the shear-thinning behavior of MR/ER fluids, the authors sug-
gested using the Herschel-Bulkley model �22� which states that:

� = �y + k��̇�n−1�̇ ��� � �y

�̇ = 0 ��� � �y �1�

where � is shear stress; �̇ is shear strain rate, and k and n are fluid
index parameters. �y is the MR/ER fluid field-dependent yield
stress. Li �23� studied the rheological properties of MR fluid of
MRF-132LD under steady shear with a commercial MR rheom-
eter. He compared experimental data and model-predicted curves
utilizing both Herschel-Bulkley and Bingham plastic models, and
concluded that the Herschel-Bulkley model predictions are more
accurate than Bingham plastic model.

The quasi-steady models, which are based on Herschel-Bulkley
steady flow analysis, was also successfully applied to a MR fluid
damper to predict its force-displacement relationship �24,25�.
However, similar to the Bingham model, it still cannot accurately
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predict the force-velocity hysteretic behavior at low velocity. Ac-
curate prediction of force-velocity is important for control analy-
sis MR/ER fluid dampers.

In order to account for the force-velocity relationship of
MR/ER fluid dampers, different models have been proposed
�26–40�. Most models are based on this assumption that MR/ER
fluids pre-yield viscoelastic properties, which are not accounted
by Bingham �or Herschel Bulkley� model, could contribute to this
highly nonlinear behavior, and therefore, more parameters associ-
ated with its pre-yield mechanism are added to make the model
more complicated. Examples are the augmented six-parameter
model proposed by Kamath and Wereley �26�, and the extended
Bingham model proposed by Gamota and Filisko �29�. These
models can provide a good estimate of MR/ER fluid damper
force-velocity response, however, the model parameters can only
be obtained a posterior for every specific test and their effect on
the model is difficult to assess.

Parametric or phenomenological models were also attempted to
describe the behavior of electro- and magneto-rheological fluid
dampers. These models are also based on determination of system
parameters by curve fitting with experimental data �30–32�.

Nonparametric approaches for modeling MR/ER fluid dampers
have also been addressed �33–40�. For example, a Chebyshev
polynomial curve fit method based on the damper velocity and
acceleration was presented by Ehrgott and Masri �33�, and Gavin
et al. �34�. A neural network model with six input neurons, one
output neuron and twelve neurons in the hidden layer were ex-
plored by Chang and Roschke �35�.

Although, parametric and nonparametric models can satisfacto-
rily emulate dynamic behavior of the ER/MR fluid damper, they
cannot provide any valuable practical tools in damper design and
analysis. In addition, the accuracy of these models relies primarily
on the experimental data in the laboratory environment.

Peel et al. �38� and Sims et al. �39,40� extended their quasi-
steady ER fluid damper model to include dynamic effects account-
ing for the hysterestic behavior of an ER long-stroke fluid damper.
They developed a lumped parameter model consisting of a spring,
mass, and damper connected in series. The spring stiffness and the
mass are related to the fluid bulk modulus and the volume of
working fluid and its density, respectively. Although the model
was derived based on the material and geometric properties some
model parameters, such as stiffness, yield stress, and viscosity still
need to be identified using experimental data to improve the
accuracy.

In this study, a theoretical model for predicting the behavior of
field-controllable, electro-rheological �ER�, and magneto-
rheological �MR� fluid dampers is developed. This model is based
on the physical parameters of a device, as well as, the properties
of a MR fluid, making it a valuable tool for MR/ER devices’
design and analysis and development of control systems. In Sec.
2, the Herschel-Bulkley model is utilized to establish relationship
for MR/ER fluid flow in a pipe and between parallel plates in flow
mode. A closed-form expression is presented for determining the
pressure drop as a function of material properties, geometry, and
volumetric flow rate for MR/ER fluids. In addition, a simplified
model is developed for each case. In Sec. 3, pre-yield and post-
yield behavior of MR/ER fluid and their effect on the dynamic
performance of MR/ER fluids utilizing a piston-driven channel
flow of MR device is developed. Comparing with the experimen-
tal results, the quasi-steady model based on Herschel-Bulkley
constitutive equation was verified. In Sec. 4, the Herschel-Bulkley
quasi-steady analysis is extended by incorporating the effect of
fluid compressibility, and a fluid mechanics-based model is devel-
oped to account for a MR fluid damper dynamic behavior. In Sec.
5, the fluid mechanics-based model is compared with experiment
results for a prototype MR fluid damper which is designed, con-
structed and tested at the University of Nevada, Reno �UNR�. It is
demonstrated that the proposed model can effectively capture the

hysteresis characteristics of the MR fluid damper both in force-
displacement and velocity-displacement over a wide working
range.

2 Modeling of MR/ER Fluid Flow
The Herschel-Bulkley model is utilized to establish relationship

for MR/ER fluid flow in flow mode in a pipe and between fixed
parallel plates. In addition, a simplified model is developed for
each case. The Herschel-Bulkley constitutive equation presented
in Eq. �1� describes the flow of MR/ER fluids through circular or
rectangular channels with a constant cross-sectional area.

Let us consider a steady, one-dimensional flow of an incom-
pressible MR/ER fluid through a channel with rectangular cross
section �−a�x�a�, or a circular cross section �0�x�a�. Rect-
angular and cylindrical coordinate systems with notations shown
in Fig. 1 are considered. The momentum equation of laminar flow
for a continuous medium is:

dp

dz
+

1

xj

��xj��
�x

= 0 �2�

with �=��x� denoting the distribution of tangential shear stress
where j=0 and j=1 denote the rectangular and cylindrical coor-
dinates, respectively, and the pressure gradient, dp /dz is consid-
ered constant along the flow direction. Integrating Eq. �2� yields
shear stress as a function of the transverse coordinate x:

� = −
1

j + 1

dp

dz
x +

c0

xj �3�

where c0 denoting a integral constant. The shear stress � vanishes
as x→0 and, therefore, c0�0. The flow has a nonyield region,
which is signified by the “plug” radius shown in Fig. 1. The plug
radius, ap, can be determined by:

ap = −
�j + 1��
dp/dz

�3a�

The yield flow region is defined when ap�x�a. Substitution of
Eq. �1� into Eq. �3� yields:

�y + k�du

dx
�n

= −
1

j + 1

dp

dz
x �4�

Since du /dx�0, Eq. �4� can be written as:

Fig. 1 Flow profile of a non-Newtonian fluid through a uniform
circular or parallel plate cross section
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du

dx
= − �−

1

j + 1

dp/dz

k
x −

�y

k
	1/n

�5�

Solving Eq. �5� with boundary condition of u=0 at x=a, one
obtains the velocity distribution in the yield flow region �ap�x
�a�, as follows:

u =
n

n + 1

�j + 1�k
dp/dz


�−
dp/dz

�j + 1�k
x −

�y

k
	�n+1�/n

− �−
dp/dz

�j + 1�k
a −

�y

k
	�n+1�/n� �6�

In the plug area, 0�x�ap, the velocity is constant. By letting x
=ap, the plug velocity can be expressed as:

up =
n

n + 1

�j + 1�k
dp/dz


�−
dp/dz

�j + 1�k
ap −

�y

k
	�n+1�/n

− �−
dp/dz

2k
a −

�y

k
	�n+1�/n� �7�

The volumetric flow rate can be derived from the following
relation:

Q = 2�
ap

a

u��x� jdx +
2

j + 1
ap

j+1� jup �8�

Substitution of Eqs. �6� and �7� into Eq. �8� yields:

Q0 =
n

2n + 1

1

k1/n�dp/dz�2a
�−

dp

dz
a − �y	�n+1�/n� n

n + 1
�y −

dp

dz
a	

�9�

Q1 =
�−

dp

dz

a

2
− �y	�n+1�/n

a

� pa

2
	3

k1/n 
�−
dp

dz

a

2
− �y	2

3n + 1

n

+

2�y�−
dp

dz

a

2
− �y	

2n + 1

n

+
�y

2

n + 1

n
� �9a�

where Q0=Q /2wa is the volume flow rate per unit area of a
rectangular channel with a width of w, and Q1=Q /�a2 is the
volume flow rate per unit area of a cylindrical pipe with a constant
radius of a. Equations �9� and �9a� can be approximated to pro-
vide explicit expressions for the pressure gradient in rectangular
and circular channels presented in Eqs. �10� and �10a�, respec-
tively �22�:

dp

dz
= Aj

�j + 1��y

a
+ � �jn + 2n + 1�

n

Qj

a
	n �j + 1�k

a
for

ap

a
� 0.5

�10�

dp

dz
=

�j + 1��y

a
1 − Bj� �jn + 2n + 1�
n

Qj

a
	n/�j� k

�y
	1/�j� for

ap

a
� 0.5

�10a�

where,

A0 =
2n + 1

n + 1
−

3n�1 + 2n��1 − n�
16�n + 1�2 −

3n�n2 + 1�
40�n + 1�

,

A1 =
3n + 1

2n + 1
−

3

16

�3n + 1��1 − n�
�2n + 1�2�n + 1�

,

and Bj and � j are also functions of fluids index n. The Herschel-
Bulkley model developed in this study can be reduced to Bingham
plastic model by setting n=1.

3 Pre-Yield Effect on MR Fluid Dampers
The presented approximated solutions using Herschel-Bulkley

model can accurately predict the force capacity of ER/MR fluid
dampers. In a previous study, using Herschel-Bulkley model and a
quasi-steady assumption, the performance of a prototype MR fluid
damper was validated by experimental result �24�. However, the
quasi-steady assumption cannot capture the nonlinear force-
velocity hysteresis, which is essential for control analysis of
MR/ER fluid devices.

Figure 2 compares the experimental and theoretical results us-
ing Herschel-Bulkley model for the force-velocity response of
UNR MRD-001 MR fluid damper. As can be seen, the quasi-static
Herschel-Bulkley �or Bingham plastic� model is inadequate to fit
the experimental data at low velocities. Most researchers were
assumed that MR/ER fluids pre-yield viscoelastic properties,
which are not accounted by Bingham �or Herschel-Bulkley�
model, could contribute to this highly nonlinear behavior
�26,28–30�. In the following Section the pre-yield and post-yield
behavior of MR/ER fluid and their effect on the dynamic perfor-
mance of these fluids with a piston-driven channel flow of MR
device is studied. The pressure drop across the applied magnetic
field is measured using two pressure transducers. The pressure
drop and piston velocity under various magnetic field strengths is
examined.

Figure 3 shows the piston-driven flow-mode type MR device
used in this study with a flat channel of rectangular cross section.
An electromagnet with 1200-turn coils and a low-carbon steel as
its core material is built and located at the middle of the channel
to permit the application of magnetic flux normal to the slit chan-
nel flow. The coil was activated by an operation-amplifier power
supply in constant current mode. A Gauss meter measured the
magnetic field strength inside the channel induced by the coil. The
MR fluids was confined in the well-sealed channel cell and was
pressurized to flow through the channel between two parallel-
arranged magnet pole pieces. There is an external V-groove in the

Fig. 2 Experimental and theoretical force-velocity results of
UNR MRD-001 damper for a sinusoidal motion at frequency of
0.5 Hz and 1.016 cm amplitude
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middle of the test channel in order to place the electromagnetic
coil and activate the MR fluid. The movement of the piston is
controlled by a hydraulic Instron machine. Two fluid pressure
transducers measure the pressure drop across the MR valve �this is
the portion at which the magnetic field is applied�. The MR valve
is h=1.0 mm in height, w=10 mm in width, and l=14 mm in
length. An accumulator, pressurized by a nitrogen tank, is used to
seal the outlet of the flow. This is done to avoid the problem of
collection of the extrude sample. Moreover, it can press the fluid
repeatedly through the MR valve under the dynamic movement of
the piston.

A series of sinusoidal inputs at frequency of 0.5 Hz with vari-
ous input currents were applied using Instron servo-hydaulic ma-
chine Model 8821s at room temperature. Before each test, the
accumulator was pressurized to 150 psi via nitrogen tank, so that
the MR fluid can follow the movement of the piston in one cycle.
This is done to avoid the formation of cavities inside the channel
when the piston is pulled back. The input coil current for each
velocity was 0, 0.25, 0.75, and 1.0 A, corresponding to 0.0, 120,
250, and 350 mT magnetic flux densities �B0� inside the air gap
measured by means of a Hall probe �F. W. Bell Gauss meter
model 9500�, respectively.

Typical results of the pressure drop across the MR valve versus
the velocity of the piston for a sinusoidal input is shown in Fig. 4.
The solid lines which are obtained from Eqs. �10� and �10a�,
presents the pressure drop across the MR valve. As can be seen,
there is no pressure drop-velocity hysteresis loop exists. A
Herschel-Bulkley quasi-static model can capture this behavior, ac-

curately. This result is different from the test data of the MR fluid
damper, although in both cases the flow mode is used. This may
suggest that the nonlinear behavior of the MR fluid damper at low
velocity is not due to the pre-yield property of the MR fluid.

4 Modeling of MR Dampers
In this section it is demonstrated that the compressibility of

MR/ER fluids in the MR damper chambers plays an important
role in the nonlinear behavior of MR fluid dampers. In this study,
the quasi-steady analysis is extended into a dynamic model by
taking into account the compressibility effects of the MR fluid.
This model is based only on the physical parameters of the device
and the properties of the MR fluid. The analysis provides further
insight into the effects of various material properties and physical
dimensions of the system on the performance of the damper.

The theoretical model is applied to a prototype MR fluid
damper �6�. The schematic of this damper is shown in Fig. 5. The
damper has a through-rod design, i.e., that the ratio of fluid vol-
ume to rod volume in the damper is constant over a stroke. The
controllable MR valves are within the piston. An enlarged cross-
sectional view of the MR fluid damper’s piston/rod assembly is
shown in Fig. 6. The fluid flow path through the piston and the
geometric dimensions used in the theoretical formulation are also
shown in Fig. 6. The mass flow rate continuity for the fluid vol-
ume is:

Fig. 3 Schematic of the MR channel flow experimental setup

Fig. 4 Theoretical and experimental pressure drop-velocity re-
sults for the piston-driven MR channel flow for a sinusoidal
motion at frequency of 0.5 Hz and 1.05 cm amplitude

Fig. 5 Schematic of the prototype UNR MRD-001 MR fluid
damper
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d

dt
�m� =

d

dt
��V� = �inQin − �outQout �11�

where � is the density, m is the mass, V is the volume, Qin is the
input flow rate, and Qout is output flow rate. Considering the com-
pressibility of the fluid, one has:

d

dt
��V� = ��dV

dt
+

V

	

dP

dt
	 �12�

where P is the pressure, and 	 is the bulk modulus of the fluid.
Combining Eqs. �11� and �12�, and assuming a constant fluid den-
sity, one obtains:

dV

dt
+

V

	

dP

dt
= Qin − Qout �13�

Equation �13� presents a mass flow rate continuity equation ac-
counting for the fluid compressibility. For this specific MR fluid
damper Qin is zero, and the flow continuity Eq. �13� for chambers
one and two are �41,42�:

dV1

dt
+

V1

	1

dP1

dt
= − Qout

dV2

dt
+

V2

	2

dP2

dt
= Qout �14�

where

V1 = �L1 − U�Ap and

V2 = �L2 + U�Ap �15�

Here U is the piston displacement, Ap is the effective area of the
piston, and 	1 and 	2 are the effective bulk moduli of the fluid in

chambers one and two, respectively. The bulk modulus is sensitive
to the variations in temperature, pressure, volumetric ratio of fluid,
and air content. At room temperature, knowing the volume of air
present per unit volume of oil and assuming a perfectly rigid
container, the effective bulk modulus is estimated by Stringer
�43�, as follows:

1

	
=

1

	0
+

Vair

Vo

1

P
�16�

where 	0 is the bulk modulus of a pure oil and is about
17
108 N/m2, Vair /Vo is ratio of a volume of air dispersed in a
volume of oil �from 0.01% to 1%�, and P is mean value pressure.
In the MR fluid damper considered here, the chambers mean value
pressure is 5.0
105 N/m2. If 1% of air is entrapped in the fluid,
the effective bulk modulus is 4.86
107 N/m2, while the effective
bulk modulus is 1.64
109 N/m2 at 0.01% of air content. There-
fore, it is evident that air content in the fluid can drastically re-
duces the effective bulk modulus. In practical applications, a small
percentage of air is always present in the system, and the effec-
tiveness of the design can significantly be affected, if the design

Table 1 Material and geometric properties of MR fluid and the
MR fluid damper

k 430 Pa-sn

n 0.4
N 4
� 0.4 Pa-s
Dp 0.0508 m
Ds 0.0127 m
D1 0.00635 m
D2 0.00635 m
L1 0.057 m
L2 0.057 m

Lmrf 0.00292 m
Ap 1.9
10−3 m2

Fig. 6 Schematic of the flow path trough the UNR MRD-001
MR fluid damper

Fig. 7 Shear stress versus shear strain rate data at various
magnetic field strengths
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process neglects the variation of compressibility. In this study, it is
reasonable to assume that the effective bulk modulus 	1 and 	2
are the same constant. Assuming 	1=	2=	, and letting �P= P1
− P2, Eqs. �14� and �15� can be rewritten as:

d�P

dt
= 	�ApU̇ − Qout�
 1

�L1 − U�Ap
+

1

�L2 + U�Ap
� �17�

where U̇ is the piston velocity. Equation �17� can be solved if Qout
is determined as a function of pressures P1 and P2. In this analy-
sis, mass flow rate continuity with the incompressible fluid as-
sumption is considered for the flow of a MR fluid through the
channel. Based on the flow paths of the fluid through the piston
shown in Fig. 4, the pressure drop P1− P2 between chamber one
and chamber two is mainly related to the pressure drop �Pvis due
to the fluid viscosity in the central channel, and the pressure drop
�Pm across the MR valve normal to the axis of the shaft. When
the MR fluid is activated, the viscous pressure drop �Pvis is much
smaller than pressure drop �Pm in the MR valves. Therefore, the
pressure drop in the central path is neglected. Thus, using Eq.
�9a�, the volume flow rate through MR valves can be expressed as
the function of pressure drop, �P= P1− P2:

Qm = 0 ��y 

p�R

2
	 �18a�

Qm =
� p�R

2
− �y	�n+1�/n

�R3

� p�R

2
	3

k1/n 
�
p�R

2
− �y	2

3n + 1

n

+

2�y� p�R

2
− �y	

2n + 1

n

+
�y

2

n + 1

n
� ��y �

p�R

2
	 �18�

where p�= �P1− P2� /2Lmrf, and R=D1 /2.
Assuming incompressible fluid in the piston channel, the total

volume flow rate is:

Qout = NQm �19�

where N is the number of MR valves. Using Eqs. �17�–�19�, the
pressure drop �P can be obtained. The pressure drop �Pvis gen-

Fig. 8 Comparisons between the proposed model and experi-
mental results for a sinusoidal motion at 1.0 Hz and 1.016 cm
„0.4 in… amplitude at 1.0 Amps electric current input. The effec-
tive bulk modulus is �=4.0Ã108 N/m2.

Fig. 9 Comparisons between the proposed model and experi-
mental results for a sinusoidal motion at 1.0 Hz and 1.016 cm
„0.4 in… amplitude at 1.5 Amps electric current input. The effec-
tive bulk modulus is �=4.0Ã108 N/m2.
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erates the viscous damping force. Therefore, the total pressure
drop across the piston can be expressed as:

F = Ap��P + �Pvis� + Ff sign�U̇� �20�

where Ff is the damper’s seal friction force �about 50 N�. For a
Newtonian Poiseuille flow in a circular channel, the pressure drop
�Pvis is:

�Pvis =
128�QLvis

�D2
4 �21�

where Q=ApU̇.

5 Validation of the Proposed Model
In this section, the theoretical results will be compared to the

experimental data to examine the accuracy of the proposed model.
The rheological property of a MR fluid �LORD 132LD� is mea-
sured by a universal dynamic spectrometer �MR-Rheometer�,
modified by Paar Physica �23�. Figure 7 presents the shear stress
versus shear strain rate at various magnetic field strengths. It is
found that at a range of low magnetic field strength, the MR fluid
exhibit Bingham plastic behavior with a constant plastic viscosity

Fig. 10 Comparisons between the proposed model and ex-
perimental results for a sinusoidal motion at 1.0 Hz and
1.016 cm „0.4 in… amplitude at 2.0 Amps electric current input.
The effective bulk modulus is �=4.0Ã108 N/m2.

Fig. 11 Comparisons between the proposed model and ex-
perimental results for a sinusoidal motion at 1.0 Hz and
1.016 cm „0.4 in… amplitude at three different electric current
input in time domain. The effective bulk modulus is �
=4.0Ã108 N/m2.

Fig. 12 Experimental results for hysteresis of UNR MRD-001
MR fluid damper subjected to 0.0, 1.0, 1.5, and 2.0 A input elec-
tric currents and harmonic motion at 1.0 Hz and 0.267 cm
amplitude
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being equal to the zero-field viscosity of Newtonian fluids. How-
ever, at higher magnetic field strengths, the MR fluid exhibits
pseudo-plastic behavior with a field-dependent yield stress. Con-
sidering the shear thinning effect, the Herschel-Bulkley model is
adapted to represent the measured shear stress versus shear strain
rate data. The fluid index of the MR material is found to be: k
=430 and n=0.4. Both the Bingham model and Herschel-Bulkley
model are used to fit the experimental data. Herschel-Bulkley
model presents more accurate representation of the MR fluid
behavior.

A prototype, UNR MRD-001 MR fluid damper shown in Fig. 2
is tested on an Instron hydraulic dynamometer. The Instron has a
maximum stroke of 15.24 cm �6.0 in�, and it is equipped with a
22 KN �5000 lbs� load cell that measures the damping forces of
the MR fluid damper. A displacement/velocity transducer mea-
sures the displacement and velocity of the hydraulic actuator. Ex-
perimental data is collected at a sampling rate of 200 Hz.

A series of tests is conducted to measure the response of the
damper under various sinusoidal loading conditions. A perfor-
mance test consists of frequency sweep held at constant displace-
ment input. Each specific amplitude and frequency represents a
run of the performance test. In each test, the input electric current
applied to the prototype MR fluid damper is maintained at a con-
stant level of 0, 1.0, 1.5, and 2.0 Amps. The geometric and mate-
rial properties are given in Table 1. The physical parameters of the
damper and the fluid properties used in this study are given in

Table 1. The yield stress �y is the function of the applied magnetic
field strength. The shear yield stress, �y, and the input current I for
the MR damper, as follows:

�y = 2.7 
 104I1.5 �22�

The units for �y and I, are Pa and Amp, respectively. This relation
is obtained by analyzing the magnetic field distribution at the MR
valve.

Figures 8–10 demonstrate the comparisons between experimen-
tal and analytical results for a sinusoidal input at a frequency of
1.0 Hz with three different current inputs of 1.0, 1.5, and
2.0 Amps. The analytical results are obtained by numerically in-
tegrating Eq. �17�, and its substitution into Eq. �20�. The value of
effective bulk modulus 	 is 4.0
108 N/m2 assuming that there is
about 0.1% of air content in the MR fluid. As shown in these
figures, the proposed model can accurately predict the dynamic
response of the MR fluid damper for both force-displacement and
force-velocity with variable input current. Figure 10 shows the
same results in the force-time domain. As can be seen the damp-
ing force of the MR fluid damper increased by increasing the
input currents. Also, the theoretical and experimental results agree
well. Similar results are obtained for a range of displacements
�0.254–1.016 cm� and frequencies �0.5–3.0 Hz�.

The effect of fluid’s bulk modulus on the dynamic response of
MR damper is also examined by adding more air into the MR
fluid. The MR fluid is exposed to air for seven days, and no
vacuum procedure is applied to the MR fluids inside the damper
before tested. Figures 11 and 12 present experimental and theo-
retical results for force-displacement and force-velocity hysteresis
loops for the case where more air was entrapped in the MR fluid,
with four different current inputs of 0.0, 1.0, 1.5, and 2.0 Amps.
The value of bulk modus 	 in the theoretical analysis is
5.5
107 N/m2 assuming that there is 1.0% of air content in the
MR fluid. It can be seen the high nonlinearity in force-velocity
hysteresis loops is mainly due to the compressibility of MR fluids.
The proposed fluid mechanics-based model can provide a simple
and direct method to capture this nonlinear behavior, if the value
of fluid’s bulk modulus is known. Both the experimental and the-
oretical results indicate that in addition to dissipating, the MR
fluid dampers store energy. This characteristic may be important
in the semi-active control design of these dampers.

Another series of experiments are conducted to verify the the-
oretical model under a step input motion. A ramp displacement
input motion, resulting a constant velocity, is applied to the MR

Fig. 13 Theoretical results for hysteresis of UNR MRD-001 MR
fluid damper subjected to 0.0, 1.0, 1.5, and 2.0 A input electric
currents and harmonic motion at 1.0 Hz and 0.267 cm ampli-
tude „�=5.5Ã107 N/m2

…

Fig. 14 Time history of input displacement and applied control
voltage
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fluid damper. The input applied voltage from 0 to 3.0 V �corre-
sponding from 0 to 2.0 Amps� is also applied to activate the
damper based on a simpler feedback on-off control strategy. This
control law is achieved by examining the damper movement. A
step change in the applied voltage from 0 to 3.0 V is applied
when the piston displacement passes through the center with a
positive velocity. When the piston displacement passes through
the center with a negative velocity, then the applied voltage is
changed to zero. Additional linear motion transducer and a control
board are used for these tests. The measured displacement and

applied voltage are shown in Fig. 13. The experimental and the-
oretical predicted responses are compared in Figs. 14�a�–14�c�
and 15. As can be seen, a good agreement is obtained between
theoretical and experiment results except at the regions when the
activation and de-activation occurs. This is due to the time delay.
The control signal generation, the electromagnet activation and
the MR fluid phase change are responsible for the total time delay.
It should be noted that the response time of the MR fluid reaching
its rheological equilibrium from current off to on states is longer
than from that of on to off. In this study, the off-on response time
is about 50 ms, while the on-off response time is about 25 ms.

6 Summary and Conclusions
In this study, an analysis of ER and MR controllable fluid flow

through pipes or parallel plates was presented using the Herschel-
Bulkley model. A steady, one-dimensional laminar flow was as-
sumed. A simplified closed-form expression is presented for de-
termining the pressure drop �gradient� as a function of material
properties, geometry, and volumetric flow rate. In addition, a dy-
namic model is developed based on fluid mechanics and the
Herschel-Bulkley flow analysis to predict the behavior of MR/ER
fluid dampers.

The effect of fluid compressibility on the performance of the
MR fluid damper is considered by the inclusion of the effective
bulk modulus in the proposed model. The theoretical model is
validated by comparing the analytical results with experimental
data for a prototype MR fluid damper. It is demonstrated that the
proposed fluid-mechanics based model can accurately predict the
dynamic response of a MR fluid damper over a wide range of
operating conditions.
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Modeling the Tribochemical
Aspects of Friction and Gradual
Wear of Diamond-Like Carbon
Films
Problems in nanomechanics often need to combine mechanical approaches together with
methods of physics and chemistry that are outside of the traditional mechanics scope.
Recent experimental studies of dry sliding between two hydrogenated DLC (diamond-like
carbon) coated counterparts in low oxygen environment showed that adsorbates have
considerable influence on friction and the friction coefficient increases with the increas-
ing of the time interval between contacts. The observed friction phenomena are assumed
caused by a reaction between the adsorbate and carbon atoms of the coatings, and when
the slider passes a point on the track, it removes mechanically some adsorbate from the
surface. The mechanical action leads to reexposure of the surface to gases in the envi-
ronment. This paper focuses on physical and tribochemical processes that occur in slid-
ing contact between the DLC coated slider and the counterpart. We develop further our
recently presented model of the process and assume that there is a transient short-life
high temperature field at the vicinities of contacting protuberances that may cause vari-
ous transformations of the surface. In particular, the sp3 phase of DLC films may trans-
form to graphite-like sp2 carbon. Our model does not depend directly on the assumption
that the adsorbate is oxygen. However, due to the prevalence of oxygen in atmospheric
gas it is assumed that the adsorbate is oxygen in the model presented. We suppose that
first an oxygen molecule becomes physically adsorbed to the surface and then due to
rubbing the molecule dissociates into two chemically active oxygen atoms. This process
leads to chemisorbtion between the carbon atoms of the coating and the “sticky” oxygen
atoms. The latter atoms can interact with the counterpart. Our modeling established a
direct connection between this kind of molecular friction and gradual wear. In particular,
it is shown that the initial roughness of the DLC surface may have a considerable
influence on the probability of breaking bonds during mechanical removal of adsorbate.
Ab initio calculations of the bond dissociation energies between carbon atoms and
carbon-oxygen atoms were performed using GAUSSIAN98 at the Møller-Plesset level of
model chemistry. The bond dissociation energy found for the carbon-carbon bonds is
523 kJ/mol, while for the carbon-oxygen bonds it is 1447 kJ/mol. It is assumed that
carbon wear particles will not be formed during gradual degradation since the coating
carbon molecules are dissolved within the environment gases. The model helps to explain
how microscopic processes, such as the breaking and forming of interatomic bonds, may
affect macroscopic phenomena, such as friction and wear. �DOI: 10.1115/1.2172267�

1 Introduction
This paper deals with the modeling of dry sliding between two

DLC �diamond-like carbon� coated counterparts in a low oxygen
environment. It is known that understanding the physical and tri-
bochemical processes that occur in a sliding contact is a question
of particular interest for tribology �1�. The applicability of the
Elovich �Roginsky-Zeldovich� equation for modeling the gas ad-
sorption process when environmental molecules form bonds to the
surface, and the modeling of friction and gradual wear when some
part of the adsorbate is removed due to rubbing the surface by a
slider are examined.

1.1 Amorphous Carbon Films. Amorphous carbon �a-C�

films are widely used as protective overcoats in various industries.
In particular, protective a-C coatings are used in the computer
industry, when a coating of several nanometers thick is placed
over the recording head and the magnetic alloy of a computer hard
disk. Sometimes a-C films are confused with crystalline diamond
coatings, implicitly assuming that a-C films must have either a
nanocrystalline or larger microcrystalline structure. In fact, amor-
phous carbon is a disordered three-dimensional material where the
sp2 and sp3 hybridizations are both randomly present. As an illus-
tration, see Fig. 6 by Frauenheim et al. �p. 128 �2�� obtained by
computer modeling of a-C films. It clearly shows that the struc-
ture is amorphous. Some sp1 hybridization could also be present
in the a-C films.

Because a-C has no exact geometric configuration, the follow-
ing characteristics of a-C samples are commonly used: �i� the
density of a sample; �ii� the sp3 /sp2 ratio; and �iii� the hydrogen
concentration. Amorphous hydrogenated carbon coatings are de-
noted as a-C:H. If the density and sp3 /sp2 ratio are high, and the
hydrogen concentration is low �up to 30%� then a-C:H coatings
are called hydrogenated diamond-like carbon �DLC:H� coatings.
Otherwise, they are soft a-C:H films. The ratio between the car-
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bon atoms in these hybridizations depends on deposition condi-
tions and other factors. Quite often during deposition of DLC
films, some metals, for example tungsten, are added. The proper-
ties of DLC:H films include high wear resistance, and high hard-
ness. Friction coefficients for various DLC films span a range
from 0.001 to more than 0.6; this large disparity is attributed
mainly to the differences in sp3 /sp2 ratio and in hydrogen content
of the coatings �3�.

1.2 Friction Forces. Friction occurs when two bodies rub
each other. According to Kragelsky and Shchedrov �4�, the main
sources of friction were discovered already in the earlier studies of
friction by G. Amontons, Ph. de la Hire, J. T. Desaguliers, by L.
Euler and S. K. Kotelnikov �5,6�. These were the molecular ad-
hesion of contacting solids and mechanical interlocking between
protuberances of surfaces. The Amontons law of friction is

� = Ff/P �1�

where � is the coefficient of friction, Ff is the friction force, and
P is the normal load �see also �4,7��. Later C. A. Coulomb �8�
suggested that the total friction force could be represented as the
sum of a constant force �A� depending on sticking of surfaces and
a force that depends on the pressure

Ff = A + �P �2�

Evidently, if A is small in comparison with �P then the Cou-
lomb law �2� reduces to the Amontons law �1�. G. A. Tomlinson
�9� presented a model of the molecular friction that involves a
lattice oscillation mechanism: Friction without wear occurs when
atoms of one surface during sliding begin to oscillate due to in-
teraction with atoms of the opposite surface, therefore producing
the lattice vibrations. As a result the external mechanical energy
�the driving force� dissipates as sound energy. Derjaguin �10� gave
a molecular meaning to Coulomb’s force A. He wrote

Ff = ��P + Sp0� �3�

where S is the true area of the interacting surface, and p is the
specific attractive force. Hence, the term A=�Sp0 represents the
tangential component of the force of molecular interactions. Der-
jaguin suggested distinguishing between the true friction coeffi-
cient �t and the apparent friction coefficient �a where

�t =
Ff

P + Sp0
and �a =

Ff

P

Currently, it is common to present the total friction force �Ff� as
the sum of the mechanical or deformational �Ff ,mech� and molecu-
lar friction �Ff ,mol� forces �11�

Ff = Ff ,mech + Ff ,mol �4�

However, Akhmatov �12� noted that Derjaguin’s model consid-
ered only crystal solids and, therefore, not all molecular mecha-
nisms affecting friction were considered.

V. A. Zhuravlev �13� under supervision of N. N. Davidenkov
gave an explanation of the Amontons law �1� using a statistical
approach. The model assumes that the frictional force is caused by
molecular interaction between atoms and is proportional to the
true contact area S. Zhuravlev’s theory of multiple contact as-
sumed that all protuberances are spherical, the radii of the protu-
berances are equal to each other, and their heights are distributed
by some statistical law. He showed that if the heights distribute
linearly, then even for elastic contact, when the contact area under
a single spherical protuberance is proportional to the power of the
load with exponent 2 /3, the linear relation occurs because as the
load increases, the number of contacting protuberances also in-
creases. A model similar to Zhuravlev’s, is the Greenwood-
Williamson model �14�, which is commonly used by researchers.

Thus, when two bodies are in sliding contact, various mechani-
cal, physical, chemical, and physiochemical processes take place

at the interface �1,3,15–18�. In analogy to Eqs. �2� and �4�, the
measured friction coefficient may be presented as

� = �mech + �mol,1 + �mol,2 �5�

where �mol,1 is the part of the friction coefficient caused by the
breaking of interatomic bonds between the adsorbate and a sur-
face, �mol,2 is the part caused by all other molecular effects, in
particular by the lattice oscillation mechanism, and �mech is the
part caused by mechanical effects, in particular by interlocking
protuberances of the roughness. Hence, it would be naïve to ex-
pect that one could model simultaneously all components of the
friction force. In this paper we concentrate on modeling the part of
the friction coefficient caused by breaking of interatomic bonds
between the adsobate and a surface, �mol,1.

1.3 Environmental Effects on the Friction of DLC:H
Films. As we have mentioned, dry sliding interaction between a
slider and a coated surface leads to various chemical and physical
transformations in DLC coatings. It is known that surfaces ex-
posed to ambient air possess adsorbed layers of hydrocarbons and
other small molecules or atoms �19�. The substance that adsorbs
and desorbs is referred to as the adsorbate and the substance to
which the adsorbate adsorbs is called the substrate. It was estab-
lished that the friction and wear properties of carbon based coat-
ings are dependent on the atmospheric conditions, the structure of
the films, and surface chemistry �3,20–24�. In particular, the fric-
tion behavior of the studied coating materials strongly depend
upon the presence of water vapor and oxygen molecules on coat-
ing layer surfaces and their associated ionic properties. However,
various kinds of carbon based coatings, i.e., graphite, diamond,
a-C, hydrogen-free DLC, and DLC:H, may demonstrate drasti-
cally different tribochemical and frictional properties under vari-
ous environmental conditions. Adding oxygen to the experimental
environment reduces friction of graphite �21�, and hydrogen-free
DLC, while friction of DLC:H films increases �3�. It is well-
known that there are two types of adsorption to a surface, namely,
chemisorption, when chemical bonds between the adsorbate and
the substrate are formed, and physisorption, that involves van der
Waals interactions such as dispersion forces or a dipolar interac-
tion. Usually, the interface contains various species both physi-
cally adsorbed and chemically bonded �25�.

Hydrogenated DLC surfaces exhibit inert behavior due to the
satisfaction of surface sites by hydrogen atoms �3�. The existence
of hydrogen atoms on the surface has two effects: �1� the surface
energy is reduced due to the satisfaction of surface sites and �2�
the adsorption of atmospheric gases is inhibited. The significance
of the second point is important since the absorbed species are
thought to control the frictional and wear properties of the surface.
The mechanism behind the effect of adsorbates on the friction
coefficient is by the breaking of atomic bonds. There is a certain
probability associated with the mechanical bond breaking involv-
ing the strength of the molecular bonds and the probability and
strength of adhesion between the counterface and the adsorbates.
Erdemir �3� noted that the presence of dihydrated carbon atoms
�two surface positive charged hydrogen nuclei bonded to one car-
bon atom� on the surface may provide better shielding or a higher
degree of chemical passivation; a dipole configuration at the slid-
ing interface may give rise to electrostatic repulsion between the
hydrogen-terminated sliding surfaces of the films and reduce
friction.

Recently, Erdemir et al. �26� have introduced a procedure for
plasma-enhanced chemical vapor deposition based on the genera-
tion of hydrogen-rich methane plasmas. The procedure leads to
the formation of super-low friction hydrogenated DLC films with
friction coefficients as low as 0.003 �27�. Our studies are mainly
concentrated on the friction of hydrogenated DLC films, and our
models will be compared with some recent experimental results
obtained by Heimberg et al. �23� that studied the friction of
DLC:H films. A simplified modeling of the experiments was pre-
sented in an earlier paper �28�. The model is now refined with the
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addition of an explicit analysis of the gas adsorption and desorp-
tion at points along the cycle, which then is averaged over an
entire cycle.

2 Modeling Friction of DLC:H Films

2.1 Tribochemistry of Hydrogen Free and Hydrogenated
DLC Films. Molecules or atoms adsorbed on surfaces of materi-
als are viewed in modern models as a collection of point masses
coupled to the surface by harmonic springs, so that they can os-
cillate about the adsorption bonds �29�. Dry sliding in the pres-
ence of oxygen and vapors can cause a reaction between an ad-
sorbate and carbon atoms of the coatings. A possible explanation
for this reaction is the dissociation of a physically adsorbed oxy-
gen molecule into two oxygen atoms. During sliding, protuber-
ances of surfaces interact with each other and generate oscillations
of the adsorbates. As a result, high temperature at the sliding
interfaces is generated. Due to transient short life high tempera-
ture fields and shear stresses, the sp3 phase of DLC films can be
transformed to graphite-like sp2 carbon. This is the phenomena
known as graphitization of DLC films that was observed under
contact loading by various authors �30,31�. The local increase of
temperature may also activate the dissociation of physically ad-
sorbed molecular oxygen into atomic oxygen. The oxygen mol-
ecule O2 first becomes physically adsorbed and then undergoes
dissociation into two oxygen atoms due to activation by the slid-
ing interface. This leads to chemisorbed O atoms to the active
sites of the surface. This scenario agrees with a previous discus-
sion of a similar process �25�.

Ab initio calculations of the bond dissociation energies between
carbon atoms and carbon-oxygen atoms were performed using
GAUSSIAN98 �32�. A fourth order Møller-Plesset perturbation
theory �33� model chemistry was used in an open-shell form. Cal-
culations were performed using the 6−31+G�d� basis set in the
GAUSSIAN98 software package, which allows for polarization and
diffuse functions that may be necessary when analyzing bond dis-
sociation energies. The bond dissociation energy computed for a
single carbon-carbon bond is 523 kJ/mol, for the carbon-oxygen
bonds it is 1447 kJ/mol, while for the carbon-hydrogen bonds it is
295 kJ/mol. The results compare well with published experimen-
tal bond energies for these pairs �34�. Bond distances, correspond-
ing to position of lowest energy, computed for C-H and C-O are
1.12 Å and 1.16 Å, respectively. The bond distance for the
carbon-oxygen bond is expected to be for a higher-order bond
�triple bond�, thus the bond distance for a carbon-oxygen double
or single bond would be larger �1.2–1.43 Å�. Hence, the bonds
for O bonded to C are slightly longer than those of H bonded to C
�mainly due to the atomic radius of O being larger than H�. We
may assume that the probability of an O adatom in contact with
the counterpart on the same surface as H is higher. It is difficult to
say that the slider will remove O adatoms before H since more
energy is needed to remove the higher-order carbon-oxygen bond
than the C-H bond.

The C-C bond energy is more complex than just breaking a
single bond. The surface C atoms in hydrogen-free DLC films are
bonded to their immediate neighbors with three � bonds and the
fourth bond may be free. The free bond may be passivated by an
adatom �a water molecule, O, H, etc.� �3�. Even if any of the �
bonds are not as strong as a single C-C bond, these three bonds
must be dissociated to remove a C molecule. Therefore, more
energy is required to dissociate a C atom from the surface of
hydrogen-free DLC than that of dissociating an O adatom from
the surface.

The process is different for a hydrogenated DLC surface. Hy-
drogen entrapment in the DLC during deposition will change the
film structure. Hence, a surface C atom in hydrogenated DLC
films may be bonded not to its immediate C neighbors but to H
atoms. Since the strength of the bond between H and C is less than
that of the lead constituents of atmospheric gas �i.e., O, N, Ar� or

water molecules, there is a greater probability that the hydrogen
will be removed due to mechanical action of the slider. Once
hydrogen is removed from the DLC surface, unoccupied surface
sites will be present and gas components from the atmosphere
may absorb to these sites. The atmospheric gas components hav-
ing a larger bond energy with carbon will be more difficult to
remove mechanically. This mechanism will increase the overall
friction between the surfaces.

Scientific research in the literature has presented various and
sometimes contradictory results concerning the friction behavior
of DLC films. For example, Erdemir �3� reported that the friction
coefficient of hydrogen-free DLC in dry nitrogen was approxi-
mately 0.65 and dropped to 0.25 after moist laboratory air was
introduced. The same test for the highly hydrogenated DLC
showed that the friction coefficient increased from 0.003 to 0.06.
Marchon et al. �20� reported that the friction coefficient of a head/
disc pair �DLC film in contact with either a Mn/Zn ferrite or
CaTiO3 ceramic slider� in pure nitrogen was 0.2 and increased to
1.2 when oxygen was introduced into the system. Marchon and
coworkers explained the phenomenon by oxidation of the surface
when exposed to oxygen, and the surface species can desorb as
carbon monoxide and/or carbon dioxide. On the other hand, Don-
net et al. �35� found that added oxygen does not change super-low
friction behavior of hydrogenated DLC observed in ultrahigh
vacuum. However, the addition of water vapor drastically in-
creased the friction coefficient from about 0.01 to 0.1. Studies by
Heimberg et al. �23� of DLC:H films in a nominally dry N2 en-
vironment showed an increase in friction as sliding speed was
decreased. This test was explained by gas adsorption to the sur-
face. The results of Marchon et al. �20� studying hydrogen free
amorphous carbon look as a contradiction to Erdemir’s results.
However, the results can be explained by noting that the chemistry
of the DLC films and the sliders in these experiments were of a
different chemical structure. This sensitivity to chemical structure
of the DLC films leads to uncertainties in the application of the
Donnet et al. �35� conclusion to hydrogenated DLC films used by
Heimberg et al. �23�. Furthermore, Heimberg et al. �23� did not
provide enough information to give preference to either oxygen or
water vapor as sources of the increase in the friction coefficient.
Perhaps both of them have influence and this is an area of future
concern regarding DLC friction studies. Our model does not de-
pend directly on the assumption that the adsorbate is O. However,
due to the prevalence of O in atmospheric gas we will assume that
the adsorbate is O in the model presented.

A competing process of hydrogen diffusion to the surface from
the DLC film may be present, but is not taken into account in the
model explicitly. Instead the mechanism will be included in the
probability of hydrogen adsorbate removal. Mobility of surface
species will be disregarded, although for high temperature appli-
cations this effect would need to be studied further. The presence
of hydrogen in the DLC film and on the surface may have an
effect on the chemical wear mechanism that has been discussed.
The effects are largely focused on the removal of CO and CO2
from the surface. Changes in the atomic structure of the film will
cause localized effects such as bond energy and distance changes
on the carbon bonds within the film that will introduce different
probability values for the removal of CO and CO2 molecules.

2.2 Kinetics of Adsorption. One of the main characteristics
of the adsorption process is the fractional coverage of adsorbate �,
which can be defined as

� =
Nc

N

where Nc is the number of surface sites occupied by adsorbate, N
is the total number of active substrate adsorption sites, and 0
���1. Since the interactions between physisorbed species are
very weak, the species with such bonds can be easily desorbed,
for example, due to thermal desorption or by mechanically break-
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ing the interacting forces between the adsorbate and substrate.
One of the most cited of the adsorption kinetics equations is an

empirical equation �the Elovich equation� introduced by Roginsky
and Zeldovich �36� in 1932 and actively used by Elovich since
1934. The equation is used to describe the adsorption process of
chemical reactions involving chemical adsorption of gases on
solid surfaces without the desorption of products

d�

dt
= Be−�� �6�

Here � and B are constants during any one experiment, and � is
the fractional part �the relative amount� of solute adsorbed at
time t.

To describe the kinetics of gas adsorption in studies of friction
between a ball and carbon based coatings during repeated passes
of the ball over the same regions of a surface, Zaïdi et al. �21�
considered a particular integral of Eq. �6� when the initial time
t0=0 and ��0�=0

��tp� =
1

�
ln�1 + B�tp�

where tp is the period of the cycle. This formula gives the value of
� after one period if there was no adsorbate at the beginning of the
cycle.

After integrating the Elovich Eq. �6�, one has

��t� =
1

�
ln�e���t0� + B��t − t0�� �7�

where t0 and ��to� are the initial instant and the initial relative
amount of adsorbate, respectively.

It should also be noted that the concepts of the total number of
active sites N and the number of occupied surface sites Nc are not
uniquely defined. If we consider the active sites of carbon, then
initially they are all occupied by hydrogen. During sliding, some
amount of hydrogen is removed. The created active sites can be
occupied by water vapor or oxygen atoms. When the slider comes
into contact with the considered region of the surface again, not
only hydrogen atoms are removed from the surface but also the
adsorbate. Hence, it is necessary to make additional assumptions
in order to use the concept of the coverage �.

Let us consider a section of surface of nominal size lxl, where
l=100 nm. If we take into account the real roughness of the sur-
face then the real area A is greater than 100�100 nm2. Since the
DLC bond distance is on the order of 1 A, then the surface A
would have approximately 106 active carbon sites if all H adatoms
were removed. Since the probability of adatom removal is quite
low, if we assume the slider to remove nHH atoms, where nH
=1000, during one pass �2 passes per a cycle�, then it would
remove �100 cycles�� �1000 atoms�� �2 passes/cycle�=2�105

atoms within A over 100 fast cycles. If � is considered as related
to the total coverage, then N=106 total surface sites. Thus, Nc
= �N−2�105� and we obtain from the definition of coverage that
�=80%. This is the percentage of H covering the surface. Because
we have neglected the adsorption of environmental gases in order
to obtain this estimation, the coverage would be greater than this.
Though, we are not interested in the hypothetical total coverage
mainly caused by repulsive H atoms, but only in “sticky” O atoms
or molecules of water vapor. Hence, take N as the number of
hydrogen free active sites �i.e., N=2�105� and Nc is the number
of sites covered by “sticky” adatoms, then a surface with a mix-
ture of H, O, and water vapor will be present.

We would like to repeat that the Elovich Eq. �6� is an empirical
equation, where the constants B and � may be found from inde-
pendent experiments. Due to the lack of experimental data, we
may use indirect estimations for the constants. The constant B can
be regarded as the initial rate since �d� /dt� tends to B as � tends
to zero at t=0. Experiments by Valenzuela-Calahorro et al. �37� on

adsorption of progesterone in an ethanol solution at surfaces of
four carbonaceous materials showed that the adsorption specific
rate constant k1 varies from 5.29�10−4 to 44.85�10−4 s−1.
Hence, we can expect that B that has the same order as k1, which
is of order of magnitude 10−4 s−1. If ��0�=0 then for a small
interval �t, we have �=B�t. Let us take B=2·10−4 s−1 and �t
=10 s, then �=2·10−3. From the definition of coverage with N
=2�105 �the number of H free sites that has been estimated
above� the number of surface sites occupied by adsorbates is
Nc=400.

We can estimate the upper bound for the number of removed H
adatoms from the energy equality �mol,2paAl�nHNA

−1JC-H, where
pa is the mean Hertzian pressure, JC-H is the bond dissociation
energy for a carbon-hydrogen bond, and NA is Avogadro’s con-
stant �6.022�1023 mol−1�. Taking JC-H as 295 kJ/mol, pa

=1.1 GPa, and �mol,2=0.001, the number of H atoms �nH� to sat-
isfy the equality is nH=2250, which is an upper bound on the
number of removed atoms. The value of Nc computed above is
within this upper bound, so the value taken for B in the model is
of the proper order.

Taking into account that the bond dissociation energy for a
single carbon-oxygen bond JC-O�1447 kJ/mol�4JC-H, we ob-
tain �mol,1=�mol,2�JC-ONc /JC-HnH��1.6�mol,2 for the experi-
ments with �t=10 s. Even though an explicit relation for �mol,2
has been derived the model will use a constant value for �mech
+�mol,2, although the derived relation shows the uncertainty in
taking �mech+�mol,2 as a constant. Since the track length L is
taken as 5 mm, then the speed of the slider should be less then
0.5 mm/s to allow a noticeable change in the friction coefficient.
This value corresponds with the experimental results of Heimberg
et al. �23�, where a speed of 533 m/s showed little change in
friction.

2.3 Kinetics of Adsorbate Removal. The model pertains to
pin-on-disk tests when a DLC coated flat disk repeatedly slides
over a fixed DLC coated ball. All values in the process will be
averaged over each cycle.

Let nm be the total number of friction measurements in a cycle,
and thus nm /2 measurements per track length, L �see Fig. 1�. For
example, if nm=1000, then 1 to 500 measurements of � are taken
during sliding forward �from left to right in Fig. 1� and 501 to
1000 measurements of � are taken during sliding in reverse �from
right to left in Fig. 1�. Hence, two measurements are taken at each

Fig. 1 Schematic of the pin-on-disk tribometer numerical
simulation performed along a linear track with nm /2 number of
measurement points, �s spacing between points, track length
L, and distances dl and dr from the left and right, respectively,
of the k-th point to the track endpoints. The relative speed be-
tween the fixed pin and oscillating disk is �o. The pin has a
spherical end cap.
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point of the track during every cycle. The span between measure-
ment points �s is defined as �s=2L /nm. The distances dl and dr
from the k-th point on the track to the left and the right ends of the
track, respectively, are dl=�s�k−1� and dr=L−�s�k−1�.

First, consider only the k-th point �a region� on the track during
the i-th cycle. When the ball passes the point, it mechanically
removes an amount of adsorbate from the surface and reexposes
the surface to gases in the environment. Hence, the amount of
adsorbate before the slider passes the point and after, i.e., after
removing the adsorbate, is different. The total number of active
sites N could also change because not only adatoms are removed
during sliding but also H atoms from the surface. However, this
effect is neglected because the overall change is relatively small.
The coverage ��k , i� increases in value continuously due to ad-
sorption and decreases abruptly �the jump ���k , i��±� twice during
a cycle when the disk passes the point during forward and back-
ward sliding, i.e., ��k , i��t+0+=��k , i��t+0−− ���k , i��± where t is the
moment in time of the passing.

3 Comparison With Experiments
An excellent data set on friction between two DLC:H coated

counterparts was presented by Heimberg et al. �23�. An attempt to
describe the experiments using a simplified approach was recently
presented by Borodich and Keer �28�. The model �28� assumed
that the ball had a circular track on a fixed disk. Hence, only one
point on the track could be considered. Also the number of active
sites N was fixed and restricted to only oxygen atoms. The current
model is refined using the above estimations of bond energy. The
refined model is employed to describe the experiments presented
by Heimberg et al. �23�.

In the experiments, the DLC coatings were deposited to a 1 mm
thickness on H13 steel flats and either 6.35 mm sapphire balls or
12.7 mm diameter steels balls. Reciprocating pin-on-disk tests
were performed in a nominally dry nitrogen environment with an
oxygen level of 0.7%. The track length L was 5 mm. Each track
was initially run-in for 1000 cycles at high sliding speeds
�1–5 mm/s�. Then, a series of “speed-dependent” and “time-
delay” tests were performed:

�i� Each speed-dependent test began with 100 cycles at high
speed �1–5 mm/s� followed by 20 cycles at a lower speed. The
ball remained in contact with the disk, and sliding continued with
no delay.

�ii� Each time-delay test was performed at a constant high slid-
ing speed ��1 mm/s�. The tests began with 100 cycles without
stops, followed by 20 cycles with fixed delays at the endpoints of
the track. The ball always remained in contact with the disk dur-
ing the test.

The friction behavior of one of the DLC surface sets for a series
containing seven different speed-dependent tests was presented in
detail. At slow stages, the speed of the ball �	0� was 513.0 �m/s,
303.0 �m/s, 100.0 �m/s, 75.0 �m/s, 50.0 �m/s, 30.0 �m/s,
and 10 �m/s.

The increase of the adsorbate surface coverage depends on the
time �t�k , i� between passes. For the first part of the cycle �sliding
from left to right�, �t�k , i�=dl /	�i−1�+dr /	�i�, while for the sec-
ond part of the cycle �sliding from right to left�, �t�k , i�
=2dr /	�i�.

If the Elovich Eq. �6� is employed, then from, Eq. �7�

��k,i��t+�t�k,i�+0+ = ln�exp�����k,i��t+0− − ���k,i��±	� + �B�t�k,i��/� ,

�8�

where t+0− and t+�t�k , i�+0+ are the moments just before and
after the successive passing of the k-th point.

It is assumed that the jump in the coverage ���k , i��± is propor-
tional to ��k , i��t+0− and to the probability p�0� p�1� of the me-
chanical breaking of interacting bonds �removing the adsorbate
from the surface�. Hence, one can write

���k,i��± = p��k,i� �9�
Substituting Eq. �9� into, Eq. �8�, we obtain

��k,i��t+�t�k,i�+0+ = ln�exp����k,i��1 − p�� + �B�t�k,i�	/�

�10�

The probability p may depend on the absolute temperature, the
speed of the ball, roughness of the surfaces, and other parameters
of the experiment. Indeed, the higher the absolute temperature, the
higher the desorption rate as shown by the Boltzmann-Arrhenius
equation. One can also expect that the higher the roughness of the
contacting surfaces, the lower the value of p because the part of
the molecules or atoms adsorbed on the surfaces would be located
in valleys, where the atoms would be protected from mechanical
removal by the protuberances of the surfaces. Thus, the probabil-
ity p can vary during the observed process. As a first approxima-
tion, it is assumed that p is constant during an experiment with a
particular sample, although p may vary from one sample to an-
other one.

The model assumes that the molecular friction is proportional
to the number of interacting bonds that were mechanically broken
when the slider passes a point on the track. Hence, the friction
coefficient �mol,1 is proportional to ���tk , i��± and the average fric-
tion coefficient that is measured on the ith cycle ���i�� is

��i� = �c +
1

nm


k=1

nm

�mol,1�i,k� = �c +
c

nm


k=1

nm

���k,i��± �11�

Where �c=�mech+�mol,2 is assumed to be constant for a specific
sample, and c is a first-order constant.

In our numerical simulations of the speed-dependent test, the
speed of the ball is taken as 1053 �m/s during the high speed
cycles. If B=4.1·10−4 s−1, �c=0.0065, �=0.6, p=0.14, tp=L /	0,
c=0.81, t0=0, and ��0�=0.001, and employing the model based
on the integral of the Elovich equation, Eqs. �9�–�11�, one can
obtain Fig. 2 and observe an excellent agreement between the
simulated and experimental friction coefficient data over the entire
range of cycle numbers.

Using the same model and the same values of the model pa-
rameters in the previous paragraph, one can perform numerical

Fig. 2 Plot of the friction coefficient „�… versus cycle number
„i… for the entire experimental range. Data points „x… are the
reciprocating pin-on-disk experimental data „from Heimberg et
al. †23‡… for DLC on DLC contact. Solid lines represent data
obtained using numerical simulation of the friction coefficient
based on the integral of the Elovich Eq. „11…, with B
=4.1·10−4 s−1, �c=0.0065, �=0.6, p=0.14, tp=L /�o, c=0.81, to
=0, and �„0…=0.001, and relative speed between pin and disk
„�o… of 10 �m/s, 30 �m/s, 50 �m/s, 75 �m/s, 100 �m/s,
303 �m/s, and 513 �m/s.
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simulations of the friction coefficient at the slow speed stages.
Figure 3 presents the graphs of the relation between friction coef-
ficient and the cycle number at slow stages of the experiment,
obtained using numerical simulations based on the integral of the
Elovich equation.

In the time-delay test, the durations of the stops �td� at the
endpoints of the track were 5.0 s, 12.0 s, 45.0 s, 95.0 s, and
162 s, respectively. It was assumed in the numerical simulations
of the time-delay test that the fixed speed 	0 was 1053 �m/s. The
time �t�k , i� between passes by the slider of the k-th point is
�t�k , i�=2dl /	�i�+ td for the first part of the cycle �sliding from
left to right�, and �t�k , i�=2dr /	0+ td for the second part of the
cycle �sliding from right to left�.

Taking �c=0.003, B=2.3·10−4 s−1, �=0.6, tp=L /	0+ td, p
=0.3, and c=0.81, and employing Eqs. �9�–�11�, one can obtain
Fig. 4, which shows a good agreement between the numerical
simulations and the experimental data.

4 An Alternative Model
After submitting our paper, we learned that another model de-

scribing the same experimental results �23� was published by
Dickrell et al. �39�. First, we note that the model by Dickrell et al.
�39� is closer to our earlier published, simplified model �28� than
to the model that we have presented in this paper. Both the Dick-
rell et al. model �39� and our simplified model �28� used the
concept of the coverage � without discussing the necessity of the
additional assumptions as was discussed above. In addition, both
models consider the process at a single point without averaging
over all points of the track during an entire cycle. It is of interest
to compare this alternative model �39� with our simplified model
�28�.

It is assumed in both models that the jump ��k+1�± in the cov-
erage after the slider passes a point is proportional to the coverage
�k and a parameter. In �39� this parameter was considered as the
ratio of the fraction of the surface covered at the exit of the pin
contact to that at the entrance and denoted as �1−
�, while in �28�
this parameter was interpreted as the probability p of the mechani-

cal breaking the interacting bonds �removing the adsorbate from
the surface�. Hence, Dickrell et al. �39� wrote �k,out=
�k,in while
in our notations �see Eq. �9��

�k,out = �k,in − ��k+1�± = �k,in − p�k,in = �1 − p��k,in

It is known �see, e.g., �28�� that if one considers the Taylor
series expansion of the right-hand expression of the Elovich Eq.
�6� and the series is truncated to the first order in �, then one
obtains the linear equation of adsorption kinetics

d�

dt
= B�1 − ��� . �12�

Equation �12� can be easily integrated. Dickrell et al. �39� consid-
ered a particular case of the equation with �=1 and attributed it to
Langmuir giving reference to Langmuir’s paper �40�. However, it
should be noted that in fact Langmuir did not use Eq. �12� in �40�.
The following physical interpretation to the parameter B was
given �39�, B=	P where 	 is the adsorption coefficient and P is
the gas pressure. Integrating Eq. �12� with �=1 from t0 to t, one
obtains

1 − ��t�
1 − ��t0�

= e−B�t−t0�

or ��t�=1− �1−��t0��e−B�t−t0�.
Thus, in the framework of the above assumptions, the following

equations are used:

�k,out = �k,in − ��k+1�± = �k,in − p�k,in = �1 − p��k,in

�k+1,in = 1 − �1 − �k,out�e−Btp �13�
Substituting the former equation into the latter, one obtains

�k+1,in = 1 − �1 − �1 − p��k,in�e−Btp. �14�

Dickrell et al. �39� noted that Eq. �14� can written as �k,in=�0
+ ��1−e−Btp�+�0�q−1��
 j=1

k qj−1, where q= �1− p�e−Btp. One can
check this using mathematical induction. Evidently, one can use
the analytical formula for the sum of geometrical progression

�k,in = �0 + ��1 − e−Btp� + �0�q − 1��
1 − qk

1 − q
. �15�

Fig. 3 Plot of the friction coefficient „�… versus cycle number
„i… for the slow speed ranges only. Data points „x… are the re-
ciprocating pin-on-disk experimental data „from Heimberg et al.
†23‡… for DLC on DLC contact. Data points „o… represent data
obtained using the numerical simulation of the friction coeffi-
cient based on the integral of the Elovich Eq. „11…, with B
=4.1·10−4 s−1, �c=0.0065, �=0.6, p=0.14, tp=L /�o, c=0.81, to
=0, and �„0…=0.001, and relative speed between pin and disk
„�o… of 10 �m/s, 30 �m/s, 50 �m/s, 75 �m/s, 303 �m/s, and
513 �m/s.

Fig. 4 Plot of the friction coefficient „�… versus cycle number
„i… for the time-delay tests. Data points „x… are the reciprocating
pin-on-disk experimental data „from Heimberg et al. †23‡… for
DLC on DLC contact. Data points „o… represent data obtained
using the numerical simulation of the friction coefficient based
on the integral of the Elovich equation „11…, with B
=2.3·10−4 s−1, �c=0.003, �=0.6, p=0.3, tp=L /�o+ td, c=0.81, and
relative speed between pin and disk �o=1053 �m/s. Time de-
lays at the track endpoints „td… were 5 �s, 12 �s, 45 �s, 95 �s,
and 162 �s.
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However, the analytical expression �15� is valid only in the
framework of the above assumptions about the validity of the
linear Eq. �12� with �=1 and that the jump ��k+1�± of the coverage
is proportional to the coverage �k. One cannot use Eq. �15� for the
entire experiment when the speed of the slider is varied. Hence,
one will need to use a numerical approach to describe the entire
experiment as we did above.

It is interesting to note that Dickrell et al. �39� have also men-
tioned the Elovich Eq. �6� and gave expressions for the first three
terms of �k. However, they did not present the general expression
for �k as we did �see. Eq. �17� in �28�� and they did not apply the
Elovich approach for description of experiments.

Probably the advantages of the Dickrell et al. model are �i� it
gives a physical meaning to parameter B, namely, B is the product
of the adsorption coefficient 	 and the gas pressure P; �ii� it claims
that the adsorption kinetics can be described by the linear Eq. �12�
with �=1 and, therefore, � is always less than 1, as one can see
from the integral of Eq. �12�; and �iii� it reduces the adsorption-
desorption kinetics of strictly periodic pin-on-disc experiments to
a simple geometrical progression.

On the other hand, it seems to us that there are the following
drawbacks in application of this model: �i� strictly speaking, the
analytical expressions of the model are not applicable to experi-
mental results �23� because in these experiments the slider was in
contact with every point of the disc twice per cycle with nonequal
time intervals between contacts; �ii� even for a circular motion of
the slider, the analytical expression is not valid when the speed of
the slider changes and therefore, one needs to employ a numerical
approach to describe the entire experiment as we did in our sim-
plified model �28�; and �iii� to describe the experiments with con-
stant period �assuming the circular motion of the slider�, it was
necessary to change the parameter 
 �this is the probability that
the interacting bonds will not be broken� even for the same
sample �see Figs. 2 and 4 in �39��. As one can see from the above
consideration, in our model the probability p, �p=1−
� is con-
stant for each experimental series.

5 Discussion and Conclusions
The results of the numerical model based on the Elovich equa-

tion have been compared with the experimental results for DLC
friction from Heimberg et al. �23� and show that the application of
the Elovich �Roginsky-Zeldovich� �36,38� equation to describe
gas adsorption is in good agreement with the results. The current
model includes a mechanism for gas desorption by modeling the
adsorbate removal through mechanical sliding. Adsorbate removal
is assumed proportional to number of broken bonds, the jump in
coverage, and is calculated at discrete points along the pin track.
Earlier versions of the desorption kinetic model �28� were treated
in an average way over the cycle and were not able to capture the
reciprocating nature of the experiments. The addition of a desorp-
tion feature in the model differs from previous models by Zaïdi et
al. �21� and Heimberg et al. �23�, which modeled the friction
coefficient of carbon coatings by a gas adsorption mechanism
only. The advantage of the model is that it can be applied to
experiments with different speeds of the slider, while the model
introduced by Dickrell et al. �39� is not applicable to these
experiments.

The addition of an adsorbate removal mechanism allows for a
direct connection between molecular interactions and friction
through the �mol,1 term. Ab initio calculations were performed to
explain the effect of hydrogen in hydrogenated carbon films on
the adsorbate removal. Due to the lower dissociation energy of
C-H than C=O, the H is more readily removed from the surface
by the slider creating more active sites for gaseous species �i.e., O
and water vapor� to adsorb to the surface. Competing mechanisms
such as hydrogen diffusion from the film to the surface, surface
mobility, and temperature are not included explicitly in the model.
The bond energies also are only first estimates. The structure of
the DLC film surface will be more complex than the approach

used here for estimating the bond energy of the adsorbates and a
more detailed analysis is necessary for more precise results.

Using the new adsorption-desorption model, the numerical
analyses of the friction coefficient were compared with experi-
mental DLC friction results in Figs. 2–4. The numerical results
showed that for a wide range of pin speeds �10–513 �m/s� the
model compares well with the experiments. This is testament that
the gas adsorption and desorption physical effects on friction are
being captured accurately, even though the exact adsorbed species
�atomic oxygen or water vapor� is not known. As the speed of the
pin relative to the disk surface decreases the time for the pin to
return to a previous point increases. The increase in time allows a
larger number of active sites to be satisfied by gaseous “sticky”
species in turn increasing the friction coefficient due to the larger
number of bonds that must be broken as the pin moves across the
disk surface. A steady-state friction value is reached after approxi-
mately ten cycles.

Gradual wear of hydrogenated DLC films is approached with
the idea of removal of CO and CO2 from the surface of the film
and is an oxidational wear approach. While this model may not be
applicable to carbon only films, because of the increase of energy
necessary for molecular dissociation off the surface, the approach
is applicable to studying DLC:H films because of the weakening
of the carbon bonds in the film by hydrogen. From the ab intio
calculations a carbon-carbon bond has larger dissociation energy
than a carbon-hydrogen bond. Though the results are for only a
single carbon-carbon bond, the dissociation of carbon from a car-
bon network �i.e., carbon film� would have increased dissociation
energy due to the increased number of bonds to be broken. Like-
wise, for a carbon atom in a hydrogenated carbon film, the disso-
ciation energy would be lower.

This paper has presented results for a friction model based on
the integral of the Elovich equation discretely analyzed over a
reciprocating pin-on-disk wear track of DLC on DLC contact. The
model has the ability to capture the physics of adsorption and
desorption kinetics related to molecular effects on friction. The
use of ab intio software was successfully employed to explain the
friction results from a molecular approach and to elucidate the
effect of molecular friction modeling on gradual, tribochemical
wear. Further studies, using techniques such as molecular dynam-
ics �41�, on the effects of molecular interactions on friction are
required to fully understand the phenomena occurring, especially
the effects of different gas species �e.g., oxygen, nitrogen, hydro-
gen, water vapor� on the analysis and the effects of film micro-
structure �e.g., at % hydrogen content, sp3 /sp2� on the gas
adsorption/desorption kinetics and tribochemical wear.
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A Greenwood-Williamson Model
of Small-Scale Friction
A Greenwood and Williamson based model for interfacial friction is presented that in-
corporates the presliding transition phenomenon that can significantly affect small de-
vices. This work builds on previous similar models by developing: an analytical estimate
of the transition length in terms of material and surface parameters, a general recursion
formula for the case of slip in one direction with multiple reversals and constant normal
loading, and a numerical method for the general three-dimensional loading case. In
addition, the proposed model is developed within a plasticity-like framework and is
shown to have qualitative similarities with published experimental observations. A num-
ber of model problems illustrate the response of the proposed model to various loading
conditions. �DOI: 10.1115/1.2172269�

1 Introduction
Two tribological phenomena make the behavior of small de-

vices significantly different than that of macro-devices, namely
relatively large �a� pre-sliding tangential deflection �PSTD� and
�b� friction at zero external load due to adhesion. PSTD, the small
hysteretic displacement displayed before large scale slip, was first
quantified by Courtney-Pratt and Eisner �1�.1 It has been the topic
of many subsequent experimental studies �e.g., �2–6�� and its phe-
nomenology in micro-devices has recently been explored in �7�,
for instance. This work will concentrate on a micro-mechanically
motivated model for friction incorporating PSTD. Extensions to
include the effects of normal adhesion will be discussed in Sec. 3.

A simple and often employed paradigm for the contact of mi-
croscopically rough surfaces was introduced in 1966 by Green-
wood and Williamson �GW� �8�. It generates the response of the
contacting surfaces by integrating the mechanical response of a
representative asperity over the contacting population, which is
determined from the height distribution of the asperities and the
mean relative distance of the two surfaces. A GW model with the
particular assumption of constant shear strength adhesive junc-
tions was used in �9�, �10, §13.4�, and �11�, for example, to argue
that the original GW conception of contacting rough surface was
compatible with the classical �macroscopic� Amontons-Coulomb
law of friction. The key to this comparison is the �nearly� linear
increase in real contact area with increasing pressure predicted by
the GW theory. In this formulation, all the asperities are expected
to slip at once and there is no PSTD effect. In the work presented
here, evolving subpopulations of the contacting asperities stick or
slip based on their individual contact area which leads to a length
scale over which the entire population slips. This is still a very
simple conception of the tribological process involved in PSTD
since mechanisms such as ploughing and wear particle formation
are ignored. The idea of evolving subpopulations of sticking and
slipping asperities was first presented by Fujimoto et al. �12,13�
and Olofsson and Hagman �14�. The current work will build upon
theirs by developing �1� an analytical estimate of the transition
length in terms of material and surface parameters, �2� a general

recursion formula for the case of slip in one direction with mul-
tiple reversals and constant normal loading, and �3� a numerical
method for the general three-dimensional loading case. In addi-
tion, this work will demonstrate qualitative similarities with ex-
perimental observations and the corresponding empirical model
presented in �15�. Furthermore, it will be shown that the proposed
model has a plasticity-like framework.

2 A Greenwood-Williamson Model of Friction
The basic premise of the proposed GW model is that each as-

perity is in a state of complete stick until a constant shear strength
is exceeded, as in �11,12,16� for example. The inherent simplify-
ing assumption is that no micro-slip takes place and no Coulomb
coefficient exists at the micro-scale �a conjecture proposed in
�17��, which is in contrast to models that employ Mindlin’s solu-
tion �18� at the asperity level �such as �12,19��. This work is an
attempt to obtain the representative qualitative features and scal-
ing of the PSTD phenomenon without modeling the details of the
single asperity solution. Given the level of idealization in treating
the geometry of each asperity as a hemisphere, as is commonly
done, this additional simplification seems appropriate.

Hertzian theory �see, e.g., �10, §4.2�� gives the normal force-
displacement relationship for an linear elastic hemispherical as-
perity as

pHertz��� = 4
3E*�R�3/2, �1�

where E*= ��1− ��1�2� /E1+ �1− ��2�2� /E2�−1 is an effective elastic
compression modulus for the contacting bodies �denoted by sub-
scripts 1, 2�, E and � being Young’s modulus and Poisson’s ratio,
respectively. In addition, the effective radius is denoted by R
= �1/R1+1/R2�−1 and � is the �far field, relative� normal displace-
ment. The contacting area for an elastic asperity is given by

a = a��� = �R� , �2�

from which the relationship between contact radius � and the
normal displacement � results

�2 = R� . �3�
From �10, §7.2� the solution for the fully sticking tangential

traction field leads to the following tangential force relationship

q = − 8G*�v , �4�

where G*= ��2−�1� /G1+ �2−�2� /G2�−1 is an effective elastic
shear modulus and v is the �far-field, relative� tangential displace-
ment. By substituting �3� into �4�, the following expression for the
force-displacement relationship

1The term “pre-sliding tangential deflection” is used here to denote the frictional
transition region of a pair of surfaces and to distinguish this phenomenon from the
“micro-slip” of an individual microscopic protuberance on a counterface.
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qstick = qstick��,v� = − 8G*�R�1/2v �5�

results, which is linear in shear displacement v but grows with the
one-half power of the �compressive� normal displacement � as the
area of contact increases.

It is assumed that slip will ensue when the �average� shear
stress2 reaches a critical value �

�a = ��R� � �q� = 8G*�R�1/2�v� , �6�

as in �20�, from which a critical normal displacement as a function
of tangential displacement can be derived

�c�v� =
�8G*�

R����2v · v �7�

�and conversely the magnitude of a critical tangential displace-
ment is given by vc���= ��� /8G*��R�1/2�. From this relation it is
seen that asperities with a large contact area stick, and those with
contact area smaller than the critical value based on �c slip, as in
�12,14�. It is assumed that magnitude and direction of the slip is
consistent with the imposed uniform tangential displacement of
the surface comprising the population of asperities. For a slipping
asperity, it is further assumed that the force will take on the lim-
iting value

qslip = qslip��,v� = − �a
v

�v�
= − ��R�

v
�v�

, �8�

so that the tangential force is continuous in the stick-slip
transition.3 Note that Eq. �8� is presently restricted to tangential
displacement monotonically increasing in a constant direction.
Extension to reversals and two-dimensional tangential displace-
ment will be treated later in this section.

A GW model with summit height distribution ��h� �scaled by
the number of asperities in a nominal area A � and a uniform
asperity radius R is employed. The reduction of the statistics of
two contacting rough surfaces to a single equivalent height distri-
bution ��h� is based on the fact that contact only involves the
relative distance between high points on the opposing surfaces.
Specifically, it requires that the relative geometry of the surfaces
has, say, a Gaussian character regardless of relative alignment �see
�21,22� for further details�. This assumption does not limit the
development of the adhesion-based model of friction under con-
sideration, but would be restrictive if interlocking and the relative
alignment of asperities on the opposing surfaces were to be in-
cluded. Herein, the relative alignment of asperities is assumed to
be immaterial to the response in that each asperity with geometry
and properties derived from the equivalent “sum surface” �22�
�i.e., R= �1/R1+1/R2�−1, etc� is effectively contacting a flat foun-
dation. This can be seen as another consequence of assuming that
statistics of the contacting surfaces are stationary and not depen-
dent on their gross relative displacement.

For ease of representing the ensemble response, moments of the
distribution are defined as

Mn�d,l� =	
l

�

�h − d�n	�h�dh =	
0

�

�h − d + l�n	�h + l�dh ,

�9�

where it is necessary to distinguish the lower integration limit l
from the variable d in the kernel. In the case where the first argu-

ment and the second are identical a simpler notation Mn�d�
=Mn�d ,d� will be used, so that M0�d� represents the number of
asperities with heights over d, for example. With this in hand, the
normal force due to elastic compression of asperities over the
nominal area A is given by

P�d� =	
d

�

pHertz�h − d�	�h�dh =
4

3
E*�RM3/2�d� , �10�

where h� �d ,�� represents the height range of the contacting
population, �=h−d is the compression of an individual asperity,
and d is the mean separation or the “approach” of the rough sur-
faces. Likewise, the tangential force for the contacting ensemble
is given by

Q�d,v� =	
d+�c

�

qstick�h − d,v���h�dh

+	
d

d+�c

qslip�h − d���h�dh
v

�v�

= −	
d+�c

�

8G*�R�h − d�1/2	�h�dhv

−	
d

d+�c

��R�h − d�	�h�dh
v

�v�

= − 8G*�RM1/2�d,d + �c�v��v − ��R�M1�d�

− M1„d,d + �c�v�…�
v

�v�
. �11�

In particular, a Gaussian distribution is typically used to repre-
sent the height variation, namely

	�h� =
Nt

�2�

exp
−

h2

2
2� , �12�

where Nt is the total number of asperities identified in the nominal
area A and 
 is the standard deviation of their summit heights. As
shown in �19�, the ensemble response of the surface is not very
sensitive to the exact shape of the distribution as long as the
distribution satisfies the physically based criterion of having a
�asymptotically� zero probability of contacting an asperity far
above the mean surface. As in �8�, the radii of all the asperities are
assumed to be equal and constant. This may not be the most
physically representative statistical description, as Greenwood and
Wu point out in �23�. An extension of the current model to a joint
probability distribution of heights and radii is straightforward �but
not explored here�.

Note that the standard deviation 
 is a measure of roughness
and a length scale. In order to illustrate the qualitative aspects of
the model �11�, it is non-dimensionalized by c=�� /8G*, a ratio of
shear strength to shear modulus, and the independent variables are
transformed by x̄=d /
 and ȳ=v /�
R. The nondimensional total
tangential force is then given by

Q̃ = − M1/2�x̄, x̄ + ȳ · ȳ/c2�ȳ − c�M1�x̄� − M1�x̄, x̄ + ȳ · ȳ/c2��
ȳ

�ȳ�
,

�13�

where 8G*R
NtQ̃�d /
 ,v /�
R�=Q�d ,v� and the moments are
evaluated for 
=1, Nt=1, namely �
=1�z�= �1/�2��exp�− 1

2z2�.
The nondimensionalized counterpart to the normal force �10� is
simply

2The solution to the fully sticking problem �4� includes singularities in the traction
field. It is assumed that the total tangential force is only representative of the actual
force on the asperity on average. A discussion of how normal adhesion is related to
this tangential adherence is delayed to the last section.

3The continuity of q with respect to v is not specifically required by the theoret-
ical framework up to this point, as is demonstrated in �16�. Furthermore, a Hertz-
Mindlin solution �with a corresponding steady-state value of tangential traction�
would merely soften the ramp-like transition of stick to large displacement slip, see
Figure 7.8 of �10�.
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P̃�x̄� = M3/2�x̄� , �14�

where 4
3E*�R
3/2NtP̃�d /
�=P�d�. Note that the nondimensional

version of �7� is

xc�ȳ� =
1

c2 ȳ · ȳ . �15�

Figure 1 shows the stick and slip contributions of the contacting
population to the total force, using c=10−24 and x̄=1. Two obvi-
ous defining qualities of the model are �a� the steady-state value
attained at large slip, which is related to the macroscopic Coulomb
coefficient, and �b� the length of the transition region, which cor-
responds to the PSTD effect. With regard to the first property, the
graph in Fig. 1 clearly shows a constant steady-state value after an
initial transition region for the given approach �and therefore pres-
sure�. It should be noted that the area under this graph illustrates
the amount of energy that is either stored elastically, in the case of
the “stick” curve representing the first quantity on the right-hand
side of �13�, or dissipated, in the case of the “slip” curve repre-
senting the second quantity on the right-hand side of �13�. Clearly,
after the transition length has been exceeded a �asymptotically�
constant amount of energy is stored elastically in the deformation
of the asperities. The PSTD predicted by this model is not �en-
tirely� reversible, due to accompanying dissipation from the slip-
ping subpopulation. In the large slip limit an effective Coulomb
coefficient can be defined as

���x̄� = lim
y→�

Q�x̄, ȳ�

P�x̄�
=

3�

4

�

E*�R




M1�x̄�
M3/2�x̄�

.

It is well known that, for certain distributions, there is a nearly
linear relationship between real contact area �and the steady-state
tangential force�, which is proportional to M1�x̄�, and resultant
normal pressure, which is proportional to M3/2�x̄� �see Fig. 13.10
of �10��. For a �normalized� Gaussian distribution, M1�x̄� /M3/2�x̄�
is a smooth monotonicaly decreasing function and a range of x̄
� �−4,4� leads to M1�x̄� /M3/2�x̄�� �0.488404,1.6096��O�1�.
Consequently, � /G*� �10−3 ,10−2� and R /
� �102 ,104� will re-
sult in ��� �10−2 ,100�. So there are physical bounds on the di-
mensionless parameters � /G* and R /
 that will lead to the ob-
served range of Coulomb coefficients. With regard to the second
property, the transition length is dependent on c �and the scaling
of v that resulted in ȳ�. Clearly, as c→0, all asperities slip at once

and the Coulomb behavior of sharp release is attained. Examining
�13�, both M1/2�x̄ , x̄+ ȳ · ȳ /c2� and M1�x̄ , x̄+ ȳ · ȳ /c2� go to zero
within the transition length. The latter,

M1�x̄, x̄ + ȳ · ȳ/c2� =
1

�2�
exp
−

1

2
�x̄ + ȳ · ȳ/c2�2�

−
1

2
x̄ erfc
 1

�2
�x̄ + ȳ · ȳ/c2�2� ,

is clearly bounded from above by ��x̄+ ȳ · ȳ /c2�= �1/�2��
�exp�− 1

2 �x̄+ ȳ · ȳ /c2�2� since it is also bounded from below by
zero. Hence

exp�− k�
1

�2�
exp
−

1

2
x̄� =

1
�2�

exp
−
1

2
�x̄ + ȳT

2/c2�2�
leads to a �nondimensional� estimate of the transition length,

ȳT�x̄� = c��x̄2 + 2k − x̄ .

If the constant k is set equal to k=4, for example, the cutoff value
is approximately 1.8% of the starting value ��x̄� and ȳT�x̄=1�
�0.014, which is in good agreement with the case shown in Fig.
1. Note that ȳT is directly proportional to c and is monotonically
decreasing with increasing x̄. The corresponding dimensional tran-
sition length is

vT�d� =
��

8G*
�R�d2 + 2k
2 − Rd

For macro-devices this length may not be significant, but for
micro-machines �with similar roughness characteristics� the tran-
sition length can be quite large in relation to their size.

2.1 Discrete Distribution. In micro-devices, the nominal area
of contact and normal loads are typically small, which both lead to
small populations of contacting asperities. To investigate the ef-
fects a small population size has on �13� and �14�, it is now as-
sumed that the summit height distribution takes the discrete form

	N�h� = 

i=1

Nt

�̂�hi − h� ,

where �hi� are random samples of a continuous Gaussian distribu-

tion with standard deviation 
=1 and �̂�h� is the Dirac delta.5 The
discrete counterpart to the nondimensional normal force �14� cal-
culated from a continuous distribution is

P̃N�x̄� = M3/2�x̄, x̄� = 

i�xi�x̄

�xi − x̄�3/2 �16�

and, likewise, the nondimensional tangential force is given by

Q̃N�x̄, ȳ� = − M1/2�x,x + ȳ2/c2�ȳ

− c�M1�x� − M1�x,x + ȳ2/c2��
ȳ

�ȳ�

= − ȳ 

i�xi�x+ȳ2/c2

�xi − x̄�1/2

− c
ȳ

�ȳ� 

i�xi
x+y2/c2

�xi − x̄� �17�

Here the moments defined by �9� become

4This is taken as a representative value for c given that mechanical yield strengths
are typically two to three orders of magnitude less than the corresponding elastic
moduli.

5The symbol �̂�h� should not to be confused with the symbol � used to denote the
normal displacement of an asperity.

Fig. 1 Tangential force vs. tangential displacement for c
=0.01 and x̄=1
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Mn�d,l� =	
l

�

�h − d�n	d�h�dh = 

i�hi�l

�hi − d�n �18�

where the factor 1 /Nt would be necessary to normalize the dis-
crete distribution.

Figure 2 plots Q̃N as a function of tangential displacement for a
progression of population sizes �Nt ,10−1Nt , . . . ,1�, for Nt=104.
Each of these discrete populations is composed of the appropriate
number of random samples of the continuous distribution ��h�,
i.e., they have approximately the same mean and standard devia-
tion as ��h�. The nominal pressure is the same for all populations,

with the chosen value being given by NtP̃�x̄=2� for the continu-

ous distribution and the magnitude of each Q̃N plotted in Fig. 2

normalized by Nt. The trend shows that the transition length of Q̃N
increases as population size decreases, starting with that of the
continuous response for a population of 104 and approaching that
of the single asperity response. This is a direct result of the in-
creasing average normal force on the contacting asperities for
smaller populations, and the fact that the transition length is tied
to largest contact area, i.e., the one with highest load. Note that
only about 2% of the largest population is bearing the contact load
but this number of contacting asperities is still greater than in the
smaller populations where all the asperities are in contact. Inter-
estingly, for this normal loading state, the total real contact area
has a decreasing trend with decreasing population size as evi-
denced by the steady-state values in Fig. 2. Lastly, note that this
numerical experiment is only meant to show trends, since it
clearly may take the Hertzian asperity model beyond the limits of
small, linear elastic deformations.

2.2 Cyclic Tangential Loading. Up until this point the tan-
gential loading has been monotonic. In order to allow for reversal
a history variable, the �tangential� slip, s, is needed in the indi-
vidual asperity response:

q = qstick��,v − s� = − 8G*�R�1/2�v − s� . �19�

In the given form, this constitutive response is consistent with the
classical theory of plasticity and is illustrated in Fig. 3. Indeed,
this response can be cast in a �strain space-based� plasticity frame-
work where the force-displacement relation is given by �19�, and
the yield criterion is given by the slip condition

�a = ��R� � �q� = 8G*�R�1/2�v − s� . �20�

To complete the model an evolution equation for s must be speci-
fied. In the case of tangential loading in a constant direction with

constant compression, ṡ= v̇ leads to the behavior shown in Fig. 3.6

In the general case where the tangential loading is two-
dimensional, a flow rule analogous to that of elastic-perfect plas-
ticity is plausible, specifically

ṡ = ��v − s� . �21�
This nonassociative flow rule uses the normal to the yield surface
projected into the tangential slip space and is the strain-space
equivalent of the constitutive rule used in �24� to model classical
Amontons-Coulomb friction.

If the asperity is in a loading state, i.e., �=�c�v−s� and

�v − s� · v̇ − 
 ��

8G*�2R

2
�̇ � 0,

then consistency requires

�v − s� · �v̇ − ṡ� = 
 ��

8G*�2R

2
�̇

which leads to a solution for the consistency parameter �,

� =
�v − s� · v̇
�v − s�2 −

�̇

2�
.

The asperity response given in �19� leads to an ensemble response
analogous to �11�,

Q�d,v − s� =	
d+�S

�

qstick�h − d,v − s�	�h�dh

+	
d

d+�S

qslip�h − d�	�h�
v − s

�v − s�
	�h�dh

= −	
d+�S

�

8G*�R�h − d�1/2�v − s�	�h�dh

−	
d

d+�S

��R�h − d�
v − s

�v − s�
	�h�dh �22�

where s= =s�h� is a slip distribution and �S is the current upper

6Since v, in fact, represents a relative displacement of the contacting surfaces, the
material time derivative of v is objective.

Fig. 2 Tangential force vs. tangential displacement for various
population sizes and a fixed normal force

Fig. 3 Tangential force vs. tangential displacement for con-
stant normal displacement
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limit of the slipping population. Since q�� ,v−s� is continuous and
s is such that q satisfies the slip condition �20�,

Q�d,v − s� = Qstick�d,v − s�

= −	
d

�

8G*�R�h − d�1/2�v − s�h��	�h�dh �23�

can be used in place of �22�. This form illustrates that only the
elastic part of the tangential displacement, i.e., v−s, generates
forces, and the product of two distributions, one describing the
number of asperities in a certain range of heights and another
tracking their slip history, is required to determine the ensemble
response. It should also be noted that the ensemble response also
fits into a plasticity-like framework7 with �23� being the force-
displacement relation,

��R�h − d� � 8G*�R�h − d�1/2�v − s�h�� �24�
being the yield condition, and the flow rule �21�, likewise, being
applied to s�h�. The nondimensional version of �23� is

Q̃�x̄, ȳ − �� = −	
x̄

�

�x − x̄�1/2�ȳ − ��x��	
=1�x�dx , �25�

where �=s�
R and, likewise, the condition �24� defining the yield
envelope becomes

x − x̄ �
1

c2 �ȳ − ��x��2. �26�

For constant approach, and therefore pressure, and in two di-
mensions, analytical solutions exist for the “elastic” slip distribu-
tion, ȳ−��x�. Here these functions are defined recursively as

ȳ − �i�x� = �0 if x − x̄ 
 0

yc�x − x̄�sign�ȳ − ȳi
R� if 0 
 x − x̄ 
 xi

S

ȳ − �i−1 else
� �27�

where ȳ is the signed magnitude of ȳ. The form of this solution
embodies the ideas that an individual asperity will continue to
deform elastically with changes in the applied tangential displace-
ment ȳ up until the elastic slip state reaches the yield surface and
that the shorter asperities with smaller contact areas slip first. The
index i refers to the number of past reversals of the time derivative
of ȳ, with the corresponding values of ȳ being �ȳ1

R , ȳ2
R , . . . , ȳi

R�. In
addition, the upper limit of the slip region, xi

S, is given relative to
x̄, the lower limit. The location of xi

S is given by the intersection of
the slip surface y=yc�x− x̄� and the elastic slip distribution at the
previous reversal ȳ−�i−1 shifted by ȳ− ȳi

R. The translation of the
solution for ȳ−� at the last reversal by the increment in ȳ since the
last reversal can be alternately interpreted as the simple translation
of �i−1 by ȳ since

�ȳi
R − �i−1� + ȳ − ȳi

R = ȳ − �i−1.

This geometric problem is illustrated in Fig. 4 where the intersec-
tion of each branch of slip distribution with the opposite sign of
the current loading increment with the yield surface is shown.
�Related concepts are found in �12� for rough surfaces and �25�
for a punch contacting a foundation, albeit without the geometric
interpretation.� Each of these branches is incorporated into the slip
distribution ȳ−��x� by previous loading and translated by the tan-
gential displacement history. The appropriate intersection point in
this case is clearly at

�xS = xc„
1
2 �ȳ − ȳN−1

R �…, 1
2 �ȳ − ȳN−1

R ��
and in general xi

S is given by

xi
S = xc„

1
2 �ȳi

R − ȳ j
R�… ,

where j=maxj�i−1, i−3, . . . , s . t . xc(
1
2 �ȳi

R− ȳ j
R�)�xj

S� or xi
S

=xc�ȳi
R� if xc(

1
2 �ȳi

R− ȳ j
R�)�x1

S The first intersection is always given
by x1

S=xc�ȳ1
R� and the first two solutions of the recursion are

�0�x�=0 and

ȳ − �1�x� = �0 if x − x̄ 
 0

yc�x − x̄�sign ȳ1
R if 0 
 x − x̄ 
 x1

S

ȳ − �0 else.
� �28�

Figure 5 shows the actual distributions for a sequence of rever-
sals. For the first loading shown �t=40� the solution for ȳ−��x� is
given by �28� �i.e., the intersection of the horizontal line at ȳ−�0
and the yield surface�, for the second loading �t=100� the solution
is the intersection of the previous one �translated by the current
loading� and the yield surface, and so forth. Figure 6 shows the
corresponding force response for this entire loading history. Note
that �12� develops the solutions �27� for the first few reversals,
which result in hysteresis loops similar to those shown in Fig. 6.
The qualitative behavior displayed in Fig. 6 also corresponds with
the linear displacement experiments of Courtney-Pratt and Eisner
�1� and the angular displacement experiments of Hsieh and Pan
�15�. Furthermore, the micro-mechanics of the proposed paradigm
correlates well with qualitative observations in �15� and provides
a rational explanation of the measured phenomenology. For in-
stance, in Fig. 5, the abrupt disappearance of the elastic slip
branch in the interval �xN−2 ,xN−3� while loading from t=140 to t
=170 corresponds to the most unexpected of the five empirical
rules stated in �15�, namely that reversal points can be “wiped out
from memory” by loading past the completion of a hysteresis
loop. Essentially, what is happening in this event is the overload-
ing of a portion of the asperity population that is currently sticking
but has stored elastic slips from a previous �partial� slip event.

Lastly, the work dissipated for a tangential displacement cycle
�in a fixed direction and at a fixed approach x̄� is calculated for the

nondimensional version �25� of the tangential reaction force Q̃ as

Wcycle�x̄, ȳmax� =�
−ȳmax

ȳmax

Q̃�x̄, ȳ − ��dȳ = 2	
−ȳmax

ȳmax

Q̃„x̄,�ȳ − ��…dȳ ,

where � has the form �28� at the limits of the cycle �not �=�0
=0�. The results for x̄=1 and a range of ȳmax� �0,0.04� are shown
in Fig. 7. The work corresponding to the area enclosed by the
tangential force cycle is relatively small for cycle magnitudes be-
low the transition length ȳT�x̄� since very little of the contacting
population slips. On the other hand, there is essentially a linear

7This is similar to crystal plasticity, where a distribution of states contributes to
the stress response at a homogenized material “point.”

Fig. 4 Intersection of the yield surface and the negative slip
branches
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increase in dissipation per cycle after the maximum tangential
displacement of the cycle exceeds the transition length, which is
consistent with Amontons-Coulomb behavior.

2.3 General Loading. For general loading and the three-
dimensional case, a numerical return map is necessary to integrate
the constitutive equations. The proposed algorithm for maintain-
ing consistency between the function � and the feasible region
�defined by the slip surface �26�� is given in Table 1, where �ȳ is
the discrete increment in applied slip. This scheme is very similar
to the predictor-corrector return-mapping algorithms from classi-
cal plasticity �see, for example, �26��, with a few important differ-
ences. First of all, a function

y = y�x� = ȳ − ��x�
is being manipulated, as opposed to a pointwise variable like plas-
tic strain. Here, a piecewise linear function

y�x� = �0 if x 
 x̄

ȳ if x � x1
S

�i�x�yi else
�

is used to represent y= ȳ−�, where �i are the common linear
interpolatory functions from finite elements �see for example
�27��.8 Secondly, since y�x� is assumed to represent a continuous
function, its selective projection onto the convex slip surface �26�
requires some care. For instance, the appropriate return path for a

8It is possible for the size of �yi� to grow with the number of time steps; however,
the number of points necessary to approximate y can be limited by noting that the
region x� �x̄ ,x1

S� is of finite extent. Additionally, the highest portion of the asperity
population may not contribute significantly to y�x���x� and therefore to Q if the
value of the population distribution ��x� decreases rapidly as the independent vari-
able increases �which is certainly the case for the Gaussian�.

Fig. 5 Prescribed tangential displacement history and slip distribution at t=40,100,140,170
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node may not be normal to the surface and may be multiply de-
fined, as is the case for a node at a cusp or a kink in the function.
In addition, the proposed algorithm includes a provision for the
nodes representing y�x� to become misordered upon return to the
feasible region. Note that in Table 1 the current values of the
applied normal and tangential �far-field� displacement are as-
sumed to be known �i.e., the ensemble is kinematically controlled�
so the current location of the yield surface is also known. Figure 8

shows the return map for a general loading case were x̄ and ȳ are
both changing, with the predictor state being simply the previous
state incremented by the new tangential load step �ȳ. Note the
added and dropped nodes as the updated representation distribu-
tion y�x� �demarcated by gray nodes� is returned to the feasible
part of slip space. Once the elastic slip distribution y= ȳ−� is
obtained, Eq. �25� is used, together with the trapezoidal rule as a
quadrature, to compute the resulting forces.

Three illustrative simulations were performed. The first com-
pares the numerical solution generated by the algorithm in Table 1
with the two-dimensional analytical solution given by Eqs. �25�
and �27�. Employing the same loading as used in Fig. 5, Fig. 9
shows the numerical solution of the tangential force response su-
perimposed on the analytical response shown in Fig. 6. Overall
there is good correspondence, with the worst correlation being at
the tangential load reversals. Better accuracy could be achieved
with a smaller loading step size.

The second problem is used to demonstrate that the algorithm is
capable of solving for the force response in the case of noncon-
stant normal separation. Here, the approach starts at x̄=1, is held
constant, then is linearly increased to x̄=2, is held constant again,
and then is linearly increased to its original value. During this

Fig. 6 Tangential force vs. tangential displacement for reverse
slip for x̄=1

Fig. 7 Tangential force and work per cycle for cyclic loading in
a fixed tangential direction

Table 1 The return mapping algorithm for slip distribution

• Assume stick and integrate, y+ =�ȳ.
• Check yield condition of the first node:

if xc�y1��x1− x̄, then prepend (x̄+xc�y1� ,y1) to set.
• Return via:

For i=1, . . . ,N, where N is the current number of nodes in the set.
If xc�yi��xi− x̄, then

1. If xc�yi−1�
xi−1− x̄, then intersect surface using line segment to
node i−1, i.e., solve:

�yi−yi−1��x−xi−1�= �xi−xi−1��y−yi−1�,
x− x̄=xc�y�

2. Else project normally to surface by solving:
�x−xi���y��

�xc�=−�y−yi���x�xc�, for �=1, . . . ,2
x− x̄=xc�y�

replace node i with new value �x ,y�.
• Append apex of slip surface �x̄ ,0� to the set.
• Drop misordered elements of the set:

For i=1, . . . ,N, if xi+ tolx�xi+1, then drop element i from set �where
tolx is a small positive constant�.

Fig. 8 Return map for a specific step
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whole sequence, the tangential displacement is being steadily in-
creased in a constant direction. The normal and tangential re-
sponses to this loading are shown in Fig. 10. The normal force
follows the trend of the normal approach, as expected. The tan-
gential force follows the same trend as seen in Fig. 1 until the
approach starts to change, which happens before the tangential
response reaches steady state. As the normal force decreases, the
yield envelope is translating in the positive x direction �refer to
Fig. 8� and the height threshold for contact is increasing commen-
surately, so that all previously slipping asperities are still slipping
�or have left the contacting subpopulation� and increasingly higher
asperities slip. So at the new value of x̄=2 a steady state of slip
has already been attained. Now when the approach is decreased to
its original value, the yield envelope translates in the negative x
direction, allowing newly contacting asperities to start to slip from
a state of zero “elastic” slip, i.e., their previous slip history has
been erased. A typical elastic slip distribution for this stage is
shown in Fig. 11. This phenomenon accounts for the fact that the
phase with decreasing approach appears to create a slip state that
is slightly different from the reverse of the increasing approach
phase. When the final, constant approach stage is reached, the
yield envelope is where it started and the slip state of the popula-
tion is similar to that shown in Fig. 11. Consequently, the remain-
ing asperities near the apex of the yield surface finally slip after a
small transition and the steady state appropriate for the normal

loading is reached.
The third simulation involved simulating the tangential re-

sponse to circular �tangential� displacement and constant normal
load �x̄=1�. For the first instance, the radius of the circle is chosen
to be 0.004, much less than the transition length of the model for
a straight line tangential displacement �approximately equal to c
=0.01�. Figure 12 shows the evolution of the elastic slip distribu-
tion projected onto the x−y1 plane. The stick-slip transition point
of the elastic slip distribution follows a roughly helical path
around the parabolic yield envelope till it reaches a steady state at
about x=1.63. A parametric plot of the tangential force in Fig. 13
shows that nearly a half cycle of displacement is needed for the
transition behavior to attain a limit cycle. Furthermore, the limit-
ing circle is not centered about zero force, indeed the center is at
�−0.000021,−0.00029�. This is due to the fact that at this small
displacement a significant portion of the contacting population
never slips and so the total force response has an elastic compo-
nent that is centered at the origin of the displacement cycle. In
actuality, if no significant portion of the contact populous slipped,
the tangential force response would follow the prescribed tangen-
tial displacement which is centered on the negative vertical axis
and passes through the origin. At the other extreme, if the radius
of the displacement circle is chosen to be 0.04, which is greater
than the straight line transition length, a limit cycle that is com-
patible with classical Coulomb behavior is displayed, as in Fig.
14. After an initial transition stage where the stick-slip transition

Fig. 9 Comparison of tangential force vs. normal force reverse
slip for x̄=1

Fig. 10 Normal and tangential force for varying approach and
increasing applied slip

Fig. 11 Elastic slip distribution at ȳ=1.5 and ȳ=0.028

Fig. 12 Evolution of slip distribution for circular displacement
of radius 0.004
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point of the population is changing, the force response is equally
distributed about zero force. Figure 15 shows that even for this
example, there is a steady-state deviation from direct opposition
of the ensemble tangential force and the direction of tangential
displacement. This deviation is inversely proportional to the ra-
dius of the displacement circle and proportional to the radius of a
typical asperity’s yield surface �which is dependent on c and the
normal loading�. A plausible explanation is illustrated in Fig. 16,
which shows when the radius of the asperity’s yield surface is
comparable to the radius of curvature of the displacement path
there will be a finite discrepancy between the elastic slip and the
loading direction. �A material point with an elastic-perfect plastic
constitution would display similar behavior under analogous load-

ing.� This discrepancy disappears as the path’s curvature becomes
large relative to the radii of the population of contacting asperities
that are significantly contributing to the total force and, in this
case, Coulomb behavior is recovered.

3 Discussion
The treatment of the individual asperity response in this work is

admittedly simple. It should be possible to apply the methodology
developed herein to a more sophisticated and representative asper-
ity response, such as the analytical solution described in �28,29� or
an empirical response derived from an atomic force microscope,
since the details of the traction fields need not be known.

Aside from the details of the asperity tractions, the first quali-
tative feature that needs to be included to represent the behavior
of micro-devices is normal adhesion. This addition raises the basic
question of whether the same mechanism is dominating both nor-
mal adhesion and the tangential adherence assumed in the model
of friction described in this work. There are multiple sources of
adhesion in small devices. For silicon-based MEMS, there seems
to be three primary sources of adhesion: capillary, electrostatic,
and van der Waals �as discussed in �30��. In polymer-coated

Fig. 13 Tangential force history for circular displacement of
radius 0.004

Fig. 14 Tangential force history for circular displacement of
radius 0.04

Fig. 15 Angular difference between displacement and force
for circular displacement of radius 0.04

Fig. 16 The circular path and the yield surface for a typical
asperity

Journal of Applied Mechanics JANUARY 2007, Vol. 74 / 39

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�SAMS� surfaces, the van der Waals forces tend to dominate. In
metallic LIGA-based devices, the metallic junction formation seen
in larger metallic devices can come into play.

In the Derjaguin-Muller-Toporov �DMT� �31� limit, the adhe-
sive force is weak relative to the elastic forces, and consequently
does not affect the contact radius, and the extension of the pro-
posed model is straightforward. The individual asperity normal
response becomes

p��� = pHertz��� − 2�Rw

where w is the work of adhesion per unit area on an asperity. For
the surface, nondimensionalization similar to that used in Eq. �14�
leads to

P̃�x̄� = M3/2�x̄� −
2�

�
M0�x̄�

where the Tabor parameter �= 4
3E*
3/2R1/2 /wR is a ratio of elastic

to adhesive force �for a more detailed development see �11��.
Since the contact area, Eq. �2�, is unaffected by DMT-type adhe-
sion, the tangential response �13� would be unchanged. Only the
effective Coulomb coefficient would change, going to infinity at
zero applied normal load.

Another limiting case is given by the Johnson-Kendall-Roberts
�JKR� solution �32�, where the adhesive force is weak relative to
the elastic force. The effect of this type of adhesion on a GW-type
contact model was explored by Fuller and Tabor in �33�. The JKR
solution alters the relationship between compression and contact
area, Eq. �2�, and is complicated by an implicit definition. Lastly,
if the range of adhesion is much greater than the surface rough-
ness, the adhesion may be directly dependent on the separation
and, unlike the asperity-based solutions, the nominal area �see the
solutions for parallel plates in �34�, for example�.

4 Conclusion
In summary, despite the basic shortcomings of GW models

�e.g., identifying “asperities” �see, e.g., �23��, the noninteraction
of individual contacts, the lack of accounting for interlocking and
alignment of asperities� and the ones inherent in this work, the
qualitative aspects of the proposed model correspond well with
experimental observations. The proposed model and methodology
have also predicted phenomenology, i.e., the response to normal
loading and unloading as surfaces are displaced tangentially and
the response to small radius circular slip, that has yet to be inves-
tigated experimentally. With this being said, it is entirely possible
that in certain cases PSTD behavior may be dominated by some
other mechanism than asperity adherence. The extension of this
work to physically interlocking asperities with adhesion is left for
future work.
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Three-Dimensional Sharp Corner
Displacement Functions for
Bodies of Revolution
Sharp corner displacement functions have been well used in the past to accelerate the
numerical solutions of two-dimensional free vibration problems, such as plates, to obtain
accurate frequencies and mode shapes. The present analysis derives such functions for
three-dimensional (3D) bodies of revolution where a sharp boundary discontinuity is
present (e.g., a stepped shaft, or a circumferential V notch), undergoing arbitrary modes
of deformation. The 3D equations of equilibrium in terms of displacement components,
expressed in cylindrical coordinates, are transformed to a new coordinate system having
its origin at the vertex of the corner. An asymptotic analysis in the vicinity of the sharp
corner reduces the equations to a set of coupled, ordinary differential equations with
variable coefficients. By a suitable transformation of variables the equations are simpli-
fied to a set of equations with constant coefficients. These are solved, the boundary
conditions along the intersecting corner faces are applied, and the resulting eigenvalue
problems are solved for the characteristic equations and corner functions.
�DOI: 10.1115/1.2178358�

Introduction
Williams �1–3� showed a typical procedure to determine singu-

lar corner functions for the two-dimensional �2D� problems of
plane elasticity and classical plate bending theory. These analyses
have been used for a half century to determine stresses in the
vicinity of sharp corners. The corner functions are either Airy
stress functions �plane elasticity� or transverse displacement func-
tions �plate bending� which are exact solutions of the partial dif-
ferential equations of equilibrium. Satisfying the boundary condi-
tions along the two radial edges which form the sharp corner
results in an eigenvalue problem. Determining the roots �eigenval-
ues� of the characteristic equation and substituting them back into
the boundary conditions yields the corner functions �eigenfunc-
tions�. Their second derivatives are the stresses. Extending Will-
iams’ works, numerous researchers used different solution
schemes to determine the characteristic equations for a thin wedge
consisted of two materials �4–7� or for three-dimensional elastic
problems �8–10�. Nevertheless, no corner functions were explic-
itly provided in these works.

Subsequently, the corner functions themselves were used for
plate vibration problems which are solved by the well-known Ritz
�11,12� method. To a series of smooth algebraic polynomials for
the transverse displacement �w� is added a series of corner func-
tions. The latter accelerate the convergence of the solution for the
desired free vibration frequencies and mode shapes because they
represent the behavior well in the vicinity of a sharp corner. Be-
cause of the singularities there, the algebraic polynomials do not.
This approach has been used to obtain accurate �i.e., almost exact�
frequencies and mode shapes for sectorial plates �13�, circular
plates with V notches or sharp radial cracks �14�, cantilevered
skewed plates �15�, and rhombic plates �16�. Three sets of corner
functions �transverse displacement and two bending rotations�

were also derived for 2D Midlin plate theory �17� and used with
algebraic polynomials to analyze the vibrations of thick, cantile-
vered skewed plates �18�. It was found for many of the plate
configurations, thin and thick, that the use of corner functions to
supplement the algebraic polynomials greatly accelerated the con-
vergence of solutions. In some cases, without them, accurate fre-
quencies could not be reasonably achieved.

Corner functions were used not only in the Ritz method but also
in other numerical approaches. In a finite element approach,
Yosibash and Schiff �19� developed a singular superelement by
using corner functions for plane elasticity and evaluated the stress
intensity factors for a V-notched plate under different in-plane
loading. The singular superelement overcomes the difficulties in
accurately determining the stresses in the neighborhood of the tip
of the V notch by using a traditional finite element approach.
Corner functions or parts of corner functions were also used in the
mesh-free Galerkin method �20,21� and a partition of unity
method �22� to approximate crack tip displacement field and to
determine intensity factors.

In recent years, because of the increase in computer speeds and
storage capability, it has been possible to obtain accurate solutions
for three-dimensional �3D� problems, especially for bodies of
revolution, using algebraic polynomials for the three displacement
components. For example, accurate frequencies have been
achieved for cylinders �23�, hollow cones �24�, and spheres
�25,26�. Frequencies for a fixed-free cylinder were found to con-
verge much slower than for a free-free one �23�, due to the stress
singularities at the fixed end, and the lack of corner functions. For
such shapes there were no abrupt changes in the boundary shapes.
However, shapes with abrupt changes �e.g., a stepped circular
shaft or a cone segment bonded to a circular cylinder �Fig. 1��
cause stress singularities, and adding suitable corner functions to
the analysis can be essential. The purpose of this paper is to derive
these functions.

One analysis of the stresses in the vicinity of boundary discon-
tinuities was summarized by Zak �27� in a Brief Note here four
decades ago, for the special case of axisymmetric loading. His
analysis used a stress function presented by Love �28� for axisym-
metric problems.

The present work approaches the 3D elasticity problem from
the standpoint of displacements, which will ultimately be the cor-
ner functions sought. Beginning with the 3D equations of equilib-
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rium for elastic bodies of revolution, capable of arbitrary displace-
ments �including axisymmetric ones as a special case�, expressed
in cylindrical coordinates, they are transformed to a new axis
system having its origin at the sharp corner. An asymptotic analy-
sis in the vicinity of the sharp corner reduces the equations to a set
of coupled, ordinary differential equations with variable coeffi-
cients. By a suitable transformation of variables the equations are
simplified to a set of equations with constant coefficients. These
are solved, the boundary conditions along the intersecting corner
faces are applied, and the resulting eigenvalue problems are
solved for the characteristic equations and corner functions.

Equilibrium Equations for a Sharp Corner
The 3D equations of equilibrium, expressed in terms of cylin-

drical coordinates �r ,� ,z�, are �cf. �29��

�r,r +
�r�,�

r
+ �rz,z +

�r − ��

r
= 0 �1a�

�r�,r +
��,�

r
+ ��z,z +

2�r�

r
= 0 �1b�

�rz,r +
��z,�

r
+ �z,z +

�rz

r
= 0 �1c�

where the �i and �ij are normal and shear stresses, respectively,
and the subscript “,�” denotes the differential with respect to the
independent variable �. To express them, instead, in terms of dis-
placement components, one uses the stress-strain equations for an
isotropic material

�i = �̄e + 2G�i, �ij = G�ij �2�

where the �i and �ij are normal and shear strains, respectively, and

e = �r + �� + �z, G =
E

2�1 + ��
, �̄ =

2�G

1 − 2�
�3�

where �̄ is the Lamé parameter; G, E, and � are the shear modu-
lus, Young’s modulus, and Poisson’s ratio for the material, respec-
tively, and the strain-displacement relations �cf. �29��

�r = u,r, �� =
1

r
�v,� + u�, �z = w,z, �r� =

u,�

r
+ v,r −

v
r

,

�rz = w,r + u,z, ��z = v,z +
w,�

r
�4�

where u, v, and w are displacement components in the r, �, and z
directions, respectively. Substituting Eqs. �2�–�4� into Eq. �1�, one
obtains

2�1 − ��u,rr +
2�1 − ��

r
u,r − 2�1 − ��

u

r2 +
1 − 2�

r2 u,�� + �1 − 2��u,zz

+
1

r
v,r� −

3 − 4�

r2 v,� + w,rz = 0 �5a�

1

r
u,r� +

3 − 4�

r2 u,� + �1 − 2��v,rr + �1 − 2��
v,r

r
− �1 − 2��

v
r2

+
2�1 − ��

r2 v,�� + �1 − 2��v,zz +
1

r
w,�z = 0 �5b�

u,rz +
u,z

r
+

v,�z

r
+ 2�1 − ��w,zz + �1 − 2��w,rr +

1 − 2�

r
w,r

+
1 − 2�

r2 w,�� = 0 �5c�

These equations are also found, for example, in the paper by
Chaudhuri and Xie �30�.

Fig. 1 Body of revolution with a sharp corner boundary discontinuity
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Because solutions of Eqs. �5� will be applied to bodies of revo-
lution subjected to arbitrary static or dynamic loads, it is propi-
tious to assume them as Fourier components in �

u = �
n=0,1

Un�r,z�cos n�, v = �
n=0,1

Vn�r,z�sin n� and �6�

w = �
n=0,1

Wn�r,z�cos n�

Substituting them into Eqs. �5� yields

2�1 − ��Un,rr +
2�1 − ��

r
Un,r − �2�1 − �� + n2�1 − 2���

Un

r2

+ �1 − 2��Un,zz +
n

r
Vn,r −

n�3 − 4��
r2 Vn + Wn,rz = 0 �7a�

−
n

r
Un,r −

�3 − 4��n
r2 Un + �1 − 2��Vn,rr +

1 − 2�

r
Vn,r

− ��1 − 2�� + 2n2�1 − ���
Vn

r2 + �1 − 2��Vn,zz −
n

r
Wn,z = 0

�7b�

Un,rz +
1

r
Un,z +

n

r
Vn,z + 2�1 − ��Wn,zz + �1 − 2��Wn,rr +

1 − 2�

r
Wn,r

−
n2�1 − 2��

r2 Wn = 0 �7c�

To investigate the stress singularities at a sharp corner along the
circumference of the body, �r, z� coordinates are transformed to
�	 ,
� coordinates as shown in Fig. 2. The relations between the
two coordinate systems are

	 = ��r − R�2 + z2, 
 = tan−1� − z

r − R
� �8a�

and

r − R = 	 cos 
, z = − 	 sin 
 . �8b�
Utilizing Eqs. �8� with chain rule differentiation, Eqs. �7� be-

come

�2�1 − ��cos2 
 + �1 − 2��sin2 
�Un,		

+ 	2�1 − ��� sin2 


	
+

cos 


	 cos 
 + R
� + �1 − 2��

cos2 


	

Un,	

−
sin 2


	
Un,	
 −

2�1 − �� + �1 − 2��n2

�	 cos 
 + R�2 Un

+ 	2�1 − ��
sin2 


	2 + �1 − 2��
cos2 


	2 
Un,



+ 	−
2�1 − ��

	 cos 
 + R

sin 


	
+

sin 2


	2 
Un,
 +
n cos 


	 cos 
 + R
Vn,	

−
n sin 


	�	 cos 
 + R�
Vn,
−

n�3 − 4��
�	 cos 
 + R�2Vn − sin 
 cos 
Wn,		

+
sin 
 cos 


	
Wn,	 −

cos 2


	
Wn,	


+
sin 
 cos 


	2 Wn,

 +
cos 2


	2 Wn,
 = 0 �9a�

−
n

	 cos 
 + R
�cos 
Un,	 −

sin 


	
Un,
� −

n�3 − 4��
�	 cos 
 + R�2Un

+ �1 − 2��Vn,		 + �1 − 2���1

	
+

cos 


	 cos 
 + R
�Vn,


+
1 − 2�

	2 Vn,

 −
1 − 2�

	 cos 
 + R

sin 


	
Vn,


−
�1 − 2�� + 2n2�1 − ��

�	 cos 
 + R�2 Vn +
n

	 cos 
 + R

��sin 
Wn,	 +
cos 


	
Wn,
� = 0 �9b�

− sin 
 cos 
Un,		 −
cos 2


	
Un,	


+ � sin 
 cos 


	
−

sin 


	 cos 
 + R
�Un,	

+
sin 
 cos 


	2 Un,

+ � cos 2


	2 −
cos 


	�	 cos 
 + R��Un,


−
n

	 cos 
 + R
�sin 
Vn,	 +

cos 


	
Vn,
�

+ �2�1 − ��sin2 
 + �1 − 2��cos2 
�Wn,		 +
sin 2


	
Wn,	


+ 	2�1 − ��
cos2 


	
+ �1 − 2��� sin2 


	
+

cos 


	 cos 
 + R
�
Wn,	

+ �2�1 − ��cos2 
 + �1 − 2��sin2 
�
1

	2Wn,



+ 	− 2�1 − ��
sin 2


	2 + �1 − 2��� sin 2


	2

−
sin 


	�	 cos 
 + R��
Wn,
 −
n2�1 − 2��

�	 cos 
 + R�2Wn = 0 �9c�

Now assume

Un�	,
� = �
m=0,1

�

	�+mÛnm�
� ,

Fig. 2 Cylindrical „r ,z… and sharp corner „� ,�… coordinates
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Vn�	,
� = �
m=0,1

�

	�+mV̂nm�
� ,

Wn�	,
� = �
m=0,1

�

	�+mŴnm�
� , �10�

where � is a yet-undetermined parameter, which can be a complex
number. The real part of � should be positive to make displace-
ment components finite at 	=0. Multiplying through Eqs. �9� by
�	 cos 
+R�2, substituting Eqs. �10�, and retaining only those
terms with the lowest degree of 	, one obtains the following equa-
tions to describe the behavior at the sharp corner:

���� − 1�cos2 
 + �2�1 − 2�� + � sin2 
�Ûn0 − �� − 1�sin 2
Ûn0,


+ �sin2 
 + 1 − 2��Ûn0,

 + sin 
 cos 
Ŵn0,

 + �1

− ��cos 2
Ŵn0,
 + ��2 − ��sin 
 cos 
Ŵn0 = 0 �11a�

V̂n0,

 + �2V̂n0 = 0 �11b�

��2 − ��sin 
 cos 
Ûn0 + �1 − ��cos 2
Ûn0,
 + sin 
 cos 
Ûn0,



+

���� − 1�sin2 
 + �2�1 − 2�� + � cos2 
�Ŵn0 + �� − 1�sin 2
Ŵn0,


+ �cos2 
 + 1 − 2��Ŵn0,

 = 0 �11c�

Equations �11� are independent of n, which means that the stress
singularities at 	 approaching to zero are expected to be the same
as those for axisymmetric problems �n=0�.

The solution of Eq. �11b� is simply

V̂n0 = A1cos �
 + A2sin �
 , �12�

where A1 and A2 are coefficients to be determined from boundary
conditions. Equations �11a� and �11c� are two coupled ordinary
differential equations with variable coefficients.

Equations �11a� and �11c� are simplified to a set of equations
with constant coefficients by the following transformation. Define

new functions Ūn0 and W̄n0 such that

Ûn0�
� = cos 
Ūn0�
� − sin 
W̄n0�
� �13a�

Ŵn0�
� = − sin 
Ūn0�
� − cos 
W̄n0�
� �13b�

Substituting Eqs. �13a� and �13b� into Eqs. �11a� and �11c� with
careful rearrangement yields

�1 − 2��cos 
Ūn0,

 − �3 + � − 4��sin 
Ūn0,


+ 2��2 − 1��1 − ��cos 
Ūn0 − 2�1 − ��sin 
W̄n0,



+ �− 3 + � + 4��cos 
W̄n0,
 + �1 − �2��1 − 2��sin 
W̄n0 = 0

�14a�

− �1 − 2��sin 
Ūn0,

 − �3 + � − 4��cos 
Ūn0,


− 2��2 − 1��1 − ��sin 
Ūn0 − 2�1 − ��cos 
W̄n0,

 − �− 3 + �

+ 4��sin 
W̄n0,


+ �1 − �2��1 − 2��cos 
W̄n0 = 0 �14b�

Multiplying Eq. �14a� by cos 
, and subtracting Eq. �14b� multi-
plied by sin 
 yields

�1 − 2��Ūn0,

 + 2��2 − 1��1 − ��Ūn0 + �− 3 + � + 4��W̄n0,
 = 0

�15a�

Similarly, summing Eq. �14a� multiplied by sin 
 and Eq. �14b�
multiplied by cos 
 yields

− �3 + � − 4��Ūn0,
 − 2�1 − ��W̄n0,

 + �1 − �2��1 − 2��W̄n0 = 0

�15b�
Thus, Eqs. �15a� and �15b� are two coupled ordinary differen-

tial equations with constant coefficients. The solutions can be eas-
ily obtained by standard procedures for solving linear differential
equations, and they are

Ūn0�
� = B1sin�� + 1�
 − B2cos�� + 1�
 + �B3sin�� − 1�


− �B4cos�� − 1�
 �16a�

W̄n0�
� = B1cos�� + 1�
 + B2sin�� + 1�
 + B3cos�� − 1�


+ B4sin�� − 1�
 �16b�

where �= �−3+�+4�� / �3+�−4��, and Bi �i=1,2 ,3 ,4� are coef-
ficients to be determined from boundary conditions.

In a brief summary, the solutions of Eqs. �5� are

u�	,�,
� = �
n

	��cos 
Ūn0�
� − sin 
W̄n0�
��cos n� + O�	�+1�

= ũ�	,�,
� + O�	�+1� �17a�

v�	,�,
� = �
n

	��A1cos �
 + A2sin �
�sin n� + O�	�+1�

= ṽ�	,�,
� + O�	�+1� �17b�

w�	,�,
� = �
n

	��− sin 
Ūn0�
� − cos 
W̄n0�
��cos n� + O�	�+1�

= w̃�	,�,
� + O�	�+1� �17c�

where Ūn0�
� and W̄n0�
� are given in Eqs. �16a� and �16b�, and
O�	�+1� are terms of higher order in 	.

Boundary Conditions, Characteristic Equations, and
Corner Functions

Having solutions to the equilibrium equations, attention is now
turned to the boundary conditions along the edges of the sharp
corner. These surfaces, 
=0 and 
=
 �see Fig. 2� may each be
either free or fixed. For example, for 
=


�a� Free �traction forces are equal to zero�

Tr = �rsin 
 + �rzcos 
 = 0,

Tz = �zrsin 
 + �zcos 
 = 0,

T� = ��rsin 
 + ��zcos 
 = 0 �18a�
�b� Fixed

u�	,�,
� = v�	,�,
� = w�	,�,
� = 0 �18b�

Substituting the displacements �Eqs. �17�� into Eqs. �2�–�4�, as 	
approaches to zero, the singular stress components can be asymp-
totically expressed for each Fourier component �n� as

�r =
�E

�1 + ���1 − 2��
� +

E

1 + �
�ũ,	cos 
 −

sin 
 ũ,


	
� + O�	��

�19a�
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�z =
�E

�1 + ���1 − 2��
� +

E

1 + �
�− sin 
w̃,	 −

cos 
w̃,


	
� + O�	��

�19b�

�� =
�E

�1 + ���1 − 2��
� + O�	�� �19c�

�r� = ��r =
E

2�1 + ��
�cos 
ṽ,	 −

sin 
ṽ,


	
� + O�	�� �19d�

�z� = ��z =
E

2�1 + ��
�− sin 
ṽ,	 −

cos 
ṽ,


	
� + O�	�� �19e�

�rz = �zr =
E

2�1 + ��
�cos 
w̃,	 −

sin 
w̃,


	
− sin 
ũ,	 −

cos 
ũ,


	
�

+ O�	�� �19f�

where � = cos 
ũ,	 −
sin 
ũ,


	
− sin 
w̃,	 −

cos 
w̃,


	
.

Substituting either the displacements of Eqs. �17�, or the
stresses of Eqs. �19�, as needed, into the boundary conditions of
either Eq. �18a� or �18b� at the faces 
=0 and 
=
 yields six
homogeneous, linear algebraic equations in the six coefficients A1,
A2, B1, B2, B3, and B4. For a nontrivial solution the determinant of
the coefficient matrix is set to zero, from which the eigenvalues
��� are obtained. Moreover, the coefficients A1 and A2 are un-
coupled from the remaining four, so two sets of � are determined,
one set from the second order determinant of A1 and A2, and one
set from the fourth order �B1 ,B2 ,B3 ,B4� determinant.

For example, if the surface 
=0 and 
=
 are both fixed, then
one obtains from the second of Eqs. �18b�

	cos �
 sin �


1 0

�A1

A2
� = 0 �20�

Whence sin �
=0 is the characteristic equation for this set of �.
Applying the first and third of Eqs. �18b� at 
=0 and 
=
 results
in a set of four equations



0 1 0 �

1 0 1 0

sin�� + 1�
 − cos�� + 1�
 � sin�� − 1�
 − � cos�� − 1�

cos�� + 1�
 sin�� + 1�
 cos�� − 1�
 sin�� − 1�


�
��

B1

B2

B3

B4

� = 0 �21�

Evaluating the determinant, using some trigonometric identi-
ties, and simplifying it further, one arrives at

sin �
 = ±
� sin 


3 − 4�
�22�

Having the characteristic equations, the eigenvalues � can be
determined from them and substituted into Eqs. �20� and �21� to
obtain the eigenvectors A1 /A2 and B1 /B4, B2 /B4, B3 /B4. The re-
sulting eigenfunctions are the desired corner functions, having
arbitrary amplitudes which may be taken as unity.

The characteristic equations for all three combinations of fixed
or free corner surfaces have been obtained. They are given in
Table 1. The equations corresponding to u and w in Table 1 were
obtained by Zak �27� for the axisymmetric �n=0� case only, using
a different approach. These equations are also identical to those
derived by Williams �1� for the sharp corner plane elasticity prob-
lems.

Table 1 Characteristic equations and corner functions for all combinations of fixed or free
intersecting surface

Boundary conditions

Characteristic equations Corner functions
=0 
=


Free Free sin �
=0 �=	�cos �
 sin n�
sin �
= ±� sin 
 u=	��cos 
U1−sin 
W1�cos n�

w=	��−sin 
U1−cos 
W1�cos n�

Free Fixed cos �
=0 �=	�cos �
 sin n�

sin2 �
 =
4�− 1 + ��2 − �2sin2 


3 − 4�

u=	��cos 
U2−sin 
W2�cos n�

w=	��−sin 
U2−cos 
W2�cos n�

Fixed Fixed sin �
=0 v=	�sin �
 sin n�

sin �
 = ±
�sin 


3 − 4�

u=	��cos 
U3−sin 
W3�cos n�

w=	��−sin 
U3−cos 
W3�cos n�

Note:
U1=−�−1+�� / �3+�−4���1sin��+1�
+ �1+�� / �3+�−4��cos��+1�
−��1sin��−1�
−� cos��−1�
,
W1=−�−1+�� / �3+�−4���1cos��+1�
− �1+�� / �3+�−4��sin��+1�
−�1cos��−1�
+sin��−1�
,
U2=−�−1+�� / �3+�−4���2sin��+1�
+ �1+�� / �3+�−4��cos��+1�
+� �2sin��−1�
−� cos��−1�
,
W2=−�−1+�� / �3+�−4���2cos��+1�
− �1+�� / �3+�−4��sin��+1�
+�2cos��−1�
+sin��−1�
,
U3=−�3sin��+1�
+ �−3+�+4�� / �3+�−4��cos��+1�
+��3sin��−1�
−� cos��−1�
,
W3=−�3cos��+1�
− �−3+�+4�� / �3+�−4��sin��+1�
+�3cos��−1�
+sin��−1�
,
�1= �� sin��−2�
− �2+��sin �
� / �2� sin 
 sin��−1�
�, �2= �2�−1+��cos 
 cos �
+ �−1+�+2��sin 
 sin �
� / ��−2+�
+2��sin 
 cos �
+ �1−2��cos 
 sin �
�,
�3= �−��cos��+1�
−cos��−1�
�� / �−sin��+1�
+� sin��−1�
�.
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The corner functions for the three combinations of fixed or free
edges are also presented in Table 1. They have not been found in
the previously published literature.

Equations �19d� and �19e� show that the shear stresses �r�

=��rand �z�=��z depend only on v, whereas the other stresses
depend upon u and w. Because the characteristic equations for v
are different from those for u and w, the singularities for the
former stresses are different from those for the latter ones.

Concluding Remarks
The objective of this work was to derive corner displacement

functions �u ,v ,w� which represent well the stresses and deforma-
tion of an elastic body of revolution in the vicinity of a sharp
boundary corner. This was accomplished by means of an
asymptotic analysis, which resulted in the characteristic equations
and their corresponding corner functions summarized in Table 1.

The corner functions will be used in future 3D studies to deter-
mine accurate free vibration frequencies and mode shapes of bod-
ies having such boundary discontinuities. These occur frequently
in practice when rods or bars are machined �e.g., a circumferential
V notch, or an abrupt diameter change�. Although other corner
functions have been used to advantage for vibration studies of 2D
continuous systems �13–16,18�, and the present ones are expected
to be suitable for 3D vibration problems, they can also be used for
static stress and deformation analysis, especially for determining
the stress intensity factors for a V notch.

The present work deals with single homogeneous bodies. It
would also be useful to have corner functions for bimaterial bod-
ies, such as when a truncated cone is bonded to a cylinder of other
material, as shown in Fig. 1. This will be the subject of a future
study.
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Rigid Body Dynamics,
Constraints, and Inverses
Rigid body dynamics are traditionally formulated by Lagrangian or Newton-Euler meth-
ods. A particular state space form using Euler angles and angular velocities expressed in
the body coordinate system is employed here to address constrained rigid body dynamics.
We study gliding and rolling, and we develop inverse systems for estimation of internal
and contact forces of constraint. A primitive approximation of biped locomotion serves as
a motivation for this work. A class of constraints is formulated in this state space. Rolling
and gliding are common in contact sports, in interaction of humans and robots with their
environment where one surface makes contact with another surface, and at skeletal joints
in living systems. This formulation of constraints is important for control purposes. The
estimation of applied and constraint forces and torques at the joints of natural and
robotic systems is a challenge. Direct and indirect measurement methods involving a
combination of kinematic data and computation are discussed. The basic methodology is
developed for one single rigid body for simplicity, brevity, and precision. Computer
simulations are presented to demonstrate the feasibility and effectiveness of the ap-
proaches presented. The methodology can be applied to a multilink model of bipedal
systems where natural and/or artificial connectors and actuators are modeled. Estimation
of the forces is accomplished by the inverse of the nonlinear plant designed by using a
robust high gain feedback system. The inverse is shown to be stable, and bounds on the
tracking error are developed. Lyapunov stability methods are used to establish global
stability of the inverse system. �DOI: 10.1115/1.2178359�

1 Introduction
Three problems associated with rigid body dynamics are stabil-

ity �1�, control of constraints �2,3�, and inverses for control and
measurement. Stability is an issue for both the system and its
inverse. The state space formulation here yields itself to system-
atic Lyapunov studies. The issue of noninvasive measurement of
joint forces and torques �4–6� is important in the study of human
location and biped models. Instruments and sensors are invasive
and often undesirable. Instruments can be large, clumsy, and dif-
ficult to insert. They interfere with natural or intended function,
and they may also require undesirable harnesses. A feasible alter-
native solution is to rely on computation and indirect measure-
ment where quantities that are easy to measure are sensed, and
measurements and computations are combined to estimate other
quantities of interest �7,8�.

Part of the directly and easily measurable quantities are ground
reaction forces measured using instrumented force plates. Re-
cently, better instrumentation of platforms supplies both force and
moment of force measurements. Certain important parameters
such as center of pressure �cop�, zero moment point �zmp�, and
foot rotation indicator �fri� can be estimated by computation �5�.
All these measurements are in the inertial �global� coordinate sys-
tem �ics�. Some of these quantities must be transformed to a body
coordinate system �bcs�, whose origin is at the center of mass, and
whose axes are along the principal axes of the body �9�.

The computational methods of interest here are used for calcu-
lating ground reaction forces and input torques �or moment of
force�.

This paper proposes the use of concepts from functional analy-
sis �10,11� and high gain systems to construct the inverse. The

application of high gain systems to linear control systems for the
purposes of compensation, robustness, stability, and design has
been known for some time �12,13�. Nonlinear feedback systems
with high gains can be theoretically studied within the framework
of singular perturbation �14,15�. However, the emphasis and de-
velopment here is on the application of inverse systems �11,12�. In
this paper we use the inverse system to estimate joint forces and
torques without using invasive methods.

Here it is assumed that the whole state of the system is avail-
able for input to the inverse system. The measurement of the state
of the system is based on a camera-computer vision system. With
some computation, we are able to arrive at the three Euler angles
and their first and second derivatives with respect to time. Planar
cases of a multisegment system that demonstrates these issues are
studied in Refs. �7,8�.

This work is relevant to diagnostic procedures where a subject
stands on a platform and performs specified maneuvers or his
posture is disturbed by deliberate random motions of the platform.
The objective is to estimate joint or muscular forces. The three
issues are platform measurements, computation methods for joint
force and torque estimation, and combinations of the two. The
problem requires recursive procedures and inverse system appli-
cations to multi-segment systems. For simplicity and precision,
the discussions and formulations of this paper are limited to a
single rigid body with one idealized �resultant� vector of torque
actuation and a massless stationary foot. More realistic multi-
segment models with natural attributes of muscles, ligaments, and
skin tissue constitute future endeavors.

The inverse construction has other applications in understand-
ing control mechanisms used by natural systems.

Maintaining upright stability and generating purposeful move-
ments require knowledge of the movement of various body seg-
ments. The sensory modalities, namely, the proprioceptive, visual,
and vestibular mechanisms, provide the angles and angular veloci-
ties �16,17�. Some of the angles and angular velocities are sensed
directly �e.g., head velocity by the vestibular system� while others
are sensed indirectly �e.g., ankle angle by the proprioceptive and
somatosensory receptors�. Based on this information, the central

Contributed by the Applied Mechanics Division of ASME for publication in the
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script received December 19, 2005. Review conducted by I. Mezic. Discussion on
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California – Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication of the paper itself in the ASME
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nervous system decides which muscles must be activated to gen-
erate the desired joint motions. Although the exact timing and
magnitude of muscle activation are most likely determined lo-
cally, a more global control strategy is necessary to coordinate
movements of different body segments. Determination of joint
torques is the essential first step to understand the feedback
mechanisms that map the sensory information onto the motor out-
puts.

A related application of inverse system methodology is to the
concept of preprogramming in the central nervous system �CNS�.
Horak and Nashner �18� have proposed a hierarchical organization
of postural control mechanisms in which a limited set of prepro-
grammed motor routines is used to generate multidimensional
movements. In the most basic form, these movements take the
form of ballistic movements where the limb trajectories are deter-
mined by the initial burst of the neural activity �19�. The ballistic
movements are required for executing fast movements. Postural
adjustments seem to fall under the category of “planned” move-
ments. For these movements, the motor control system operates in
a closed-loop manner to achieve a greater accuracy while mini-
mizing the effects of neural delays. This view of the postural
control system requires the CNS to maintain an approximate
model of the intended movement and the internal system dynam-
ics �20�. This model is developed through a “learning” process.
During the execution of planned movements, the “stored” or
“learned” movements are constantly compared with the informa-
tion arriving from the sensory mechanisms. As long as the in-
tended and actual movements are within a tolerance limit, the
programmed routines can proceed without intervention. When
conflicts arise, such as when an unanticipated postural disturbance
is encountered, the CNS will first attempt to modify the param-
eters of the preprogrammed routine to achieve the intended move-
ment. If the conflict persists, such as when a lesion develops in the
sensorimotor mechanisms, the CNS must actively use the avail-
able sensory feedback mechanisms to maintain stability while at
the same time modifying its internal model of the system dynam-
ics. The cost of such conflicts is increased response time and
reduced accuracy of resulting movements. We hope to apply our
methods to the preprogramming situation in a later paper.

2 Rigid Body Dynamics
Rigid body dynamics and control can be formulated with the

recently developed and elegant geometric tools �21,22�. Here we
apply the Newton-Euler method in order to derive the equations of
a single free rigid body. Let � and � be, respectively, the Euler
angles and the angular velocity vector of the body expressed in
the previously defined body coordinate system �bcs�. Let X and V
be the translational vectors of position and velocity of the center
of gravity of the body, expressed in the inertial coordinate system
�ics� system. With reference to vector R, we define the skew sym-

metric 3�3 matrix R̆ �23,24�. The vectors of force G and � are,
respectively, the gravity vector and an equivalent or resultant vec-
tor of all forces �9� acting on the rigid body. Similarly N is an
equivalent or resultant couple of all forces acting on the rigid
body. Alternatively speaking, N is the sum of all the couples:
stabilizing couples, trajectory control couples, and the moment of
all forces acting on the rigid body. The asymptotic stability of the
rotational system by nonlinear feedback has been discussed in
Refs. �1,23�, and will be briefly presented later in this paper. The
coordinate systems are defined in the Appendix . Based on these
simplifications, the equations of motion of the single rigid body
are�25,26�

�̇ = B����

J�̇ = f��� + N
�1�

Ẋ = V

mV̇ = G + �

where J is the diagonal moment of inertia matrix, expressed in
bcs, B is a 3�3 matrix defined in the appendix , and where

f��� = �̆J�

2.1 Rolling and Gliding. When a rigid body contacts another
rigid body, the two surfaces can be approximated by rigid body
spheres. As an example, suppose a player kicks a soccer ball such
that the front of the shoe touches the ball, i.e., a toe kick takes
place. The collision can be approximated by the viscoelastic col-
lision of one sphere with another. When the player kicks the ball
with the top of his foot, the foot surface can be approximated by
a plane, a cylinder, or a sphere.

Let a uniformly dense rigid body sphere with radius Q be cen-
tered at the origin of the inertial system. This means the center of
the sphere and its center of gravity coincide. Let another uni-
formly dense sphere of radius q roll or glide on the first sphere.
The contact eliminates one of the three degrees of translational
freedom of the moving sphere. At the point of contact, the two
spheres’ surfaces can be approximated by their respective tangent
planes. This means two of the degrees of freedom of the moving
rigid body are thus constrained. The remaining degree of freedom
is the self- rotation of the rigid body along the center to center line
of the two spheres. In order to control the motions of gliding and
rolling, the equations of constraint are needed �2,3�.

Let Eq. �1� describe the motion of the moving sphere. In both
gliding and rolling, the two spheres’ being in contact is described
by the holonomic constraint

X�X − �Q + q�2 = 0 �2�

Alternatively, this equation is written as

X�Ẋ = 0 �3�

2.2 Pure Gliding. In gliding a fixed vector S in the body
coordinate system �bcs� keeps contact with the stationary sphere.
Let p and ṗ be, respectively, the vector of the contact point, and its
velocity in ics:

p = X + A���S
�4�

ṗ = Ẋ + A����̆S

In gliding, the velocity of the moving body at the point of contact
is in the tangent plane of the stationary sphere, therefore the inner
product of ṗ and X is zero. Also the velocities of the point of
contact and the center of gravity of the moving sphere are in
parallel, because the instantaneous center of rotation of the mov-
ing sphere is the origin of the ics, namely, the center of the sta-
tionary sphere. The latter requirement means

ṗ = �q/�Q + q��Ẋ �5�

From Eqs. �4� and �5�, the constraints for gliding can be obtained

qẊ + �Q + q�A����̆S = 0 �6�

2.3 Rolling Motion. Rolling is a special case of the more
general class of nonholonomic systems �2�, Chap. 3. Nonholo-
nomic constraints either appear as part of the structure of a me-
chanical system, or are part of the specifications for control in
order to simplify implementation of coordinated movement.

In rolling motion of the sphere, the instantaneous center of
rotation of the moving sphere is the point of contact. From this
information, and the above equations, one can obtain the three
constraints for rolling
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QẊ + qA����̆A����X = 0 �7�
With the equations of the rigid body and the constraints given
above, the questions of the derivation of the necessary forces of
constraint in order to maintain the constraint, and deriving feed-
back in order to implement the constrained motion can be carried
out as described in Refs. �2,3�. These issues are not further pur-
sued here.

2.4 Illustrative Example. Suppose the motion is limited to
the x1x3 plane. Suppose further that the spheres are initially
stacked on the top of each other so that

p�0� = �0,0,Q��
and

X�0� = �0,0,Q + q��
The equations of motion can be derived by setting

x2 = �1 = �3 = 0

The gliding constraints in this case become

x1̇ = �Q + q��2̇cos��2�
�8�

x3̇ = − �Q + q��2̇sin��2�
The rolling constraints in this case become

Qx1̇ = q�2̇x3

�9�
Qx3̇ = − q�2̇x1

2.5 Rotational Motion. Consider the rigid body formulation
in Eq. �1�. Suppose the center of gravity is fixed in the ics, and
only the rotational motion is of interest. For an alternative state
space formulation of rigid body dynamics, see �24�.

It is assumed here that the range of � is limited such that the
Lipschitz condition is satisfied. With the latter assumption, it has
been shown that with state feedback

N = − B����K1� − L1�

where both K1 and L1 are positive definite �23� that the rotational
rigid body motion is asymptotically stable. Isidori ��24�, Lemma
2, Appendix B, Sec. 2.2�, and Khalil ��15�, Chaps. 5,6� have
shown that the system is stable under nonvanishing persistent dis-
turbance. Equivalently, one can prove that the rotational system of
Eq. �1� produces uniformly bounded outputs when the inputs is
uniformly bounded. This means the above system is bounded-
input bounded-output �BIBO� stable.

3 Inverse System

3.1 Basics. The inverse system can be formally designed
based on concepts from functional analysis �11� and nonlinear
operator algebra �10� or from more recent geometrically and al-
gebraically based methods �24,27�. The functional analysis
method for computation of the inverse is based on feedback
�11,12�. Since natural, robotic, and humanoid systems use feed-
back for stability, control, and tracking, use of methods based on
feedback appear to be more natural, intuitive, and less sensitive to
system parameter variations. Besides, the natural structure of the
system to be inverted is used for arriving at the inverse. In addi-
tion, it is important that the inverse system be stable. It is not
clear, from the development of the modern techniques �24,27�,
whether additional stabilizing mechanisms are needed for the in-
verse system, and how these additional mechanisms may disturb
the inverse system, and interfere with its operation. The approach
here also does not require development of zero dynamics �24�
since it is assumed that the state and hence the initial state are

known for the inverse system.
The method developed below considers global stability and in-

version issues simultaneously. It is shown how global stability
may effect the performance of the inverse system, and how an
exact inverse may affect global stability. First a brief introduction
is made to the feedback structure of the general inverse systems.
The structure is applied to the rotational dynamics of a single rigid
body next. Global stability is guaranteed by perturbation of the
inverse.

Let U be the input and Z the state output of a nonlinear con-
tinuous invertible system described operationally by a nonlinear
operator H. Following the formulation of �10,11�, the system can
be described by the following equation:

Z = HU �10�
We assume that conditions for the existence and uniqueness of

the solution for Z, and the inverse system �11� are satisfied. Let O1
and O2 be two operators such that the product of the two operators
is equal to identity

O1O2 = I

where I is the identity operator. The block diagram of the system
above followed by the inverse system is given in Fig. 1. The
output of the inverse system is V. The equations of the inverse
system are

Q = �H − O2�V
�11�

V = O1�Z − Q�

Elimination of Q from the above two equations results in

Z = HV �12�

From Eqs. �10� and �12�, it follows that

U = V

In other words the tandem connection of the system and its
inverse results in the identity operator. In practical terms if Z is the
measured state of a musculo-skeletal system, and if it is desired to
estimate the input muscular vector of forces, i.e., vector U, the
output V of the inverse system is an estimate of the unknown
muscular forces. This inverse system can be constructed by the
block diagram of Fig. 1, and requires an exact replica of the origi-
nal system, i.e., the operator H.

3.2 Construction. We construct here the inverse of the rota-
tional system discussed above. The inverse system is based on the
above nonlinear operator principles and is defined by a nonlinear
feedback system with one forward component and two feedback
components as shown in Fig. 1.

Consider the rotational system alone

�̇ = B����
�13�

J�̇ = f��� + U

Consider the operator H to be represented by Eq. �13�. The state

Fig. 1 A continuous nonlinear system H, and its inverse com-
posed of a replica of H and two operators O1 and O2
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Z = ���,����
and the input is

U

In this formulation Z is of dimension six, and U of dimension
three. For ease of formulation, we assume U is a sum of two
couples so that it is also of dimension six

U = �V1�,V2���
The feed forward component of the inverse system is a nonlinear
amplifier with high gain. Let K and L be two 3�3 positive defi-
nite matrices, and define the 6�6 positive definite matrix G1 with
K and L along its diagonal

G1 = �K,0,0,G� �14�

Similarly, with B as defined in Eq. �1�, and I as the 3�3 iden-
tity matrix, define the 6�6 matrix � as follows:

� = �B�,0,0,I� �15�

With these definitions, the operator O1 is defined

O1 = �G1 �16�

The operator O2 is simply the inverse of O1

O2 = �G1�−1��−1� �17�
The other feedback component is a replica of the original sys-

tem slightly modified to account for adding together the vectors
N1 and N2 as a single input vector.

�2
˙ = B��2��2

�18�
J�2

˙ = f��2� + V1 + V2

3.3 Stability. Stability of the inverse system is proven here.
From the derivation of the inverse, it follows that the inverse
system above is BIBO stable �15�.

It is relatively easy to consider asymptotic stability of the in-
verse system as a high gain system by setting

O2 = 0.

We show here that this approximate inverse system is asymptoti-
cally stable. The block diagram of the rotational system and its
inverse is shown in Fig. 2. Let the Lyapunov function for the
inverse system be the sum of the kinetic and elastic energy of the
system

� = 0.5�2�J�2 + 0.5��2��K��2� . �19�

It is easy to show that the derivative of the Lyapunov function is

�̇ = − �2�L�2 �20�

This derivative is negative semidefinite, but a nonzero � cannot
be a solution to the inverse system equation. Therefore by invok-
ing La Salle’s Theorem �28�, the global stability of the inverse
system is assured, subject to the limited range of � due to the
Lipschitz condition.

3.4 Approximate Inverses. Due to the large choices for O1
and O2, one can develop a range of inverses. Of particular interest
are those when a fraction of O2 is used in the feedback path,
namely, an amplifier with a small gain precedes or follows the
operator O2.

Assume a particular O1 is chosen �see examples later�. Let 	 be
a number

0 
 	 
 1

and let

E = 	O2

It can be shown that the system that is inverted is H− �1−	�O2.
This means, for a given H and given 	 the operator O1 can be
selected sufficiently large enough and, consequently, the operator
O2 sufficiently small enough for the error in V to be acceptable.
The computational detail of how to carry this step out are not
presented here.

Another bound can be established for the steady state system
state error. Assuming that the gains K and L are sufficiently high
so that U=V, and letting E1 and E2 be, respectively, the errors in
angle � and angular frequency �, it follows that

V1 + V2 = B�KE1 + LE2 �21�
From this equation, approximate upper bounds can be established
for the errors

�E1� = � K−1�V1 + V2� ,

and

�E2� = � L−1�V1 + V2�

This means that the higher the gains K and L are, the smaller the
error. Of course, higher values for the gains demand higher sam-
pling rate, and therefore more on-line computations.

4 The Inverted Pendulum
Next, a rigid body is considered �23� as shown in Fig. 3. It is

assumed that a point on the body with coordinates

R = �0,0,− r�
in the body coordinate system is attached to the origin of the ics,
and that the vector of constraint force at the point of attachment,
expressed in the ics is �. A system of muscle-like actuators con-
nect the rigid body to a weightless foot. One actuator is shown in
Fig. 3. Let the resultant moment of all the actuator forces, relative
to the contact point, as shall be described later, be vector N in the
bcs. Let the sum of the actuator forces, in the ics be H. The
rotational motion of the rigid body about its center of gravity is
governed by

�̇ = B����
�22�

J�̇ = f��� + N + R̆A��

The translational motion of the center of gravity is governed by

Fig. 2 The free rigid body in rotation with input N1 and output
Z1, „Eq. „13…… in series with the nonlinear inverse with high gain
feed forward and a model of the system in the feedback path

Fig. 3 The inverted pendulum in contact with a massless foot.
An actuator with origin O on the pendulum and insertion point
on the foot applies a force F to the pendulum along the line OI.
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mV̇ = G + H + �

where G is the gravity vector in ics. It can also be shown �1� that

the latter equation can be rewritten, involving variables � and �̇

� + G + H = − mA�R̆�̆�� + mAR̆�̇ �23�

Equations �22� and �23� can be simultaneously solved for �̇ and

�. The solution for �̇ is the state space equation for the pendulum
relative to a body coordinate system whose origin is at the base,
and whose axes are parallel with the principal axes.

�̇ = B����
�24�

Jb�̇ = �fb��� + N − R̆A�G�

Here Jb is the moment of inertia matrix relative to a �principal
axes� body coordinate system centered at the point of attachment
or contact; and

fb = �̆Jb�

The solution for � is the force of constraint as a function of
inputs, i.e., N and gravity, and the state� i.e., � and ��. For ease
of reference the latter two equations are symbolically written as

�̇ = O3��,�,Nt�
�25�

� = O4��,�,Nt�

where Nt is the total applied torque to the pendulum, including
stabilizing torques, actuating torques, gravity, etc.

4.1 The Inverse System. The problem of the inverse system,
defined before, is slightly generalized here: Given the quantities
�, and �, estimate Nt and �. We assume again that H=0. This
means that the resultant torque of these forces, namely, N is the
same whether it is relative to the center of gravity of the inverted
pendulum or the point of contact.

Suppose the same inverse system as in Fig. 2 is utilized, it
follows that

Nt = N2

�26�
� = O4��,�,Nt�

It is clear from Eq. �23� that � can be computed from the state Z1,
and the derivative of � with respect to time. This alternative way
to arrive at an expression for � is to compute it from Eq. �1�

� = mV̇ = − G + m�AR̆�̇ − A�̆2R� �27�

The structure of the inverse system is shown in Fig. 4.

4.2 Measurement of N and �. It is instructive to consider
direct measurement of the torque N and force �. For this purpose,
an instrumented platform is needed on which the inverted pendu-

lum is installed. The instruments measure the total torque and
force applied by the rigid body to the platform. Here, we consider
the stationery case. For a discussion of the dynamic case, see �5�.
For a detailed exposition of the planar case of the inverse system
in a multilink biped in the sagittal plane see �7,8�. This means the
platform instrumentation avails N1 and �. Let us assume that the
pendulum is attached to the ground by a massless and stationery
foot. Further, if the foot is not attached rigidly to the ground, we
assume that the friction forces are large enough, �i.e., larger than
the constraint forces� so that the foot does not move or slide.
Suppose there are six actuators connecting the inverted pendulum
to the foot—each agonist-antagonist pair providing control for the
roll, pitch and yaw movements. The arm of the actuator force,
shown in Fig. 3 is vector r, expressed in the bcs that extends from
the contact point to the origin of the actuator, i.e., point O. Sup-
pose the force of this actuator, namely, vector F, is expressed in
the ics. The torque of this actuator, relative to the point of contact,
expressed in bcs, is

R̆A�F

The vector N is the sum of the six torques. One needs the points of
origin and insertion of the six actuators in ics, in order to arrive at
the direction of these forces, and one needs the insertion coordi-
nates and the contact point coordinates, in the bcs, in order to
arrive at the R vectors. The massless foot, in turn is acted upon by
−N, expressed for convenience, in the ics. Suppose, the interaction
between this foot and the ground is by a set of n discrete three-
vector ground reaction forces: �i where index i runs from 0 to n.
These forces act on the bottom of the foot, respectively, at vectors
si in the ics. Let the ankle joint apply a single force of constraint
� to the massless foot. The equilibrium of the foot results in the
sum of the ground reaction forces being equal to � plus the sum
of the actuator forces; and the moment of all the ground reaction
forces relative to the point of contact, i.e., the origin of the ics,
being equal to N, expressed in the ics. When the sum of the
actuator forces is equal to zero: H=0, the sum of the ground
reaction forces under the foot is exactly equal to �.

Now, from the instrumentation on the platform, the sum of the
ground reaction forces under the foot and the moment of all these
reaction forces relative to the point of contact can be computed.
This means the quantities � and N can be measured from the
instrumentation on the platform.

The main point of the discussion here is that the inverse of the
inverted pendulum is derived with the dynamics of the inverted
pendulum formulated about the point of contact. The inverse sys-
tem estimates the total torque applied to the rigid body. To arrive
at the applied torque, the contribution of the torque of the con-
straint force � must be subtracted.

5 Simulation Results
Several computer simulations are presented here in order to

demonstrate the efficiency, viability, and feasibility of this formu-
lation. The first simulation deals with a body rotating about its
center of gravity. The numerical parameters and gains are listed in
the Appendix .

5.1 Rotating Rigid Body. The rotational rigid body motion
about its center of gravity is considered. First, state feedback of
the position Euler angles and angular velocity vector, i.e., � is
used from Sec. 2.5 to stabilize the motion. The stabilizing position
and velocity gains are the 3by3 diagonal matrices: K1
=Diag�400,400,320�, and L1=Diag�60,60,42�.

Three impulsive torques are assumed to have been applied to
this rigid body in order to set up the following initial conditions:

�0,0,0,2.5,− 2.5,2.5�
With these initial states the behavior of the system is simulated for
about 0.1 s. The vector of total torque acting on the body and the
state are computed and also recorded. This transient behavior of

Fig. 4 The inverted pendulum with input N1 and output Z1 „Eq.
„22…… in series with the nonlinear inverse with high gain feed
forward path and a model of the system in the feedback path.
The estimate of total input torque is the output N2. The ground
reaction force � „Eq. „23…… is constructed from Z1 and Nt.
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the stabilized rigid body is documented in Fig. 4. The figure
shows the input torques, the angles �, and angular velocities �,
all as functions of time. The angles and angular velocities are now
input to the inverse system. It is assumed that the physical param-
eters of the inverse system are the same as those of the rotating
rigid body. The gains in the forward loop, namely, K and G in Eq.
�14� are chosen to be the same diagonal 3�3 matrix, i.e.,

K = Diag�10000,5000,500�

and

G = Diag�10000,5000,500�
The output of the inverse system is given in Fig. 5, along with

the error signals in � and �. The comparison of the actual and the
estimated torques in the previous two figures show that the inverse
system is very good in tracking the torques. There are initial errors
in all three torques because, for the inverse system, the initial
states and outputs are all zero. However, as can be seen in the
figure, the tracking of the torques is very good after about
0.004–0.008 s.

5.2 The Inverted Pendulum. In this simulation, the rigid
body is anchored to the ground at a point with coordinates R as an
inverted pendulum. The initial conditions are all zero. It is sub-
jected to stabilizing feedback torques as before. These feedback
gains are given by the diagonal 3�3 matrices: K2
=Diag�1200,1200,960�, and L2=Diag�180,180,126�.

In addition, there are periodic torques acting at the base of the
pendulum for one second. The three components of the torque
vector are equal

n = 1000 sin�10
t� .

The input torques and the ground reaction force are to be the
desired quantities to be estimated. They are recorded and plotted
in Fig. 6. The angles and angular velocities of the inverted pen-
dulum are the outputs of the system and are plotted in Fig. 7. It
can be seen that the system assumes a steady state in less than
0.2 s. The structure of the inverse is taken as that of Fig. 8. The
gains in the forward loop, namely, K and G in Eq. �14� are chosen
to be the same diagonal 3�3 matrix, i.e.,

K = Diag�17232,15232,200�
and

G = Diag�17232,15232,200�
The inputs to this inverse system are the position angles and the

angular velocities recorded as outputs of the previous simulation.
With these inputs and zero initial conditions, the inverse system is
simulated for one second. The outputs of the inverse system are
the ground reaction forces and the total torques acting on the
system. These estimated total torques and estimated ground reac-
tion force are shown in Fig. 9. The state trajectories of the inverse
system are shown in Fig. 10.

6 Conclusions
We have considered dynamics, inverse, and control of a single

rigid body system with constraints. We have developed a method-
ology to construct Lyapunov stable inverses for these systems.
The procedures here can be extended to multi-body systems that
are better approximations to systems involved in medicine, robot-
ics and human movement.

Fig. 5 The input torque En, the angles, and angular velocities as functions of time for one rigid body
anchored at its center of gravity
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Fig. 6 The estimated torques as outputs of the inverse system as functions of time. The error signals in �
and �, as inputs to the high gain forward component of the inverse are also plotted as functions of time.

Fig. 7 The total applied torques to the inverted pendulum, and the resulting ground reaction force as
functions of time
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The computational methods pose interesting challenges for
multilink three-dimensional systems:

1. If the trajectories of the state of the system �i.e., position
and velocity variables� and either the input torques or the
accelerations are known, the ground reaction and joint
forces should be computable as shown in Ref. �2� for
very simple cases.

2. The computation of input torques to the multilink system,
in order for the system to follow a desired trajectory, or
the estimation of such torques, when the trajectories are
known, can be implemented with inverses.

3. In certain instances, both the trajectories and the con-
straint forces �ground reaction forces are an example� are
specified. This class of problems has not been studied
from a theoretical point of view. Some heuristic methods
have been applied before �29�. The problem is tractable if
there are a sufficient number of inputs to control the
forces and the trajectories.

We have shown relevance of functional analysis, inverse system
theory, and high gain systems to formulating and solving the
above problems.
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Appendix

1 Single Rigid Body
The inertial coordinate system is defined as follows. The x1 axis

is to the front of a biped, or the front of an airplane —the longi-

tudinal axis. The x2 coordinate is in the direction of the extended
left hand of the biped or the pitch axis of the airplane. The third
axis x3 is vertically upward, the yaw axis in an airplane. The Euler
angle sequence corresponds to roll, pitch, and yaw.

Let A be the 3�3 orthonormal matrix that transforms vectors
from the bcs to ics. The inverse of A is A�. The matrices A���,
B���, and R̆ are given below.

Let A1��1�, A2��2�, and A3��3� be defined by

A1��1� = �1 0 0

0 cos �1 − sin �1

0 sin �1 cos �1
�

A2��2� = � cos �2 0 sin �2

0 1 0

− sin �2 0 cos �2
�

A3��3� = �cos �3 − sin �3 0

sin �3 cos �3 0

0 0 1
�

Now A��� can be defined

A��� = A1��1�A2��2�A3��3�

The matrix B��� is given by

Fig. 8 The state trajectories of the inverted pendulum: � and � as functions of time
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Fig. 9 The estimated total torque applied to the inverted pendulum, the estimated ground reaction
forces as functions of time

Fig. 10 The state of the estimator as a function of time
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B��� = �
cos �3

cos �2

− sin �3

cos �2
0

sin �3 cos �3 0

− sin �2cos �3

cos �2

sin �2sin �3

cos �2
1�

It is to be observed that matrix B is of finite norm only for a
limited range of �2, i.e., �2 must lie in the open interval: −
 /2 and
+
 /2. This is the range for which the Lipschitz condition holds.
For �1 and �3, respectively, corresponding to roll and yaw, the
range is from −
 to +
- corresponding to the range for the physi-
cal three-dimensional world. All the development and results in
this paper are limited to these ranges.

Let vector R have components r1 ,r2, and r3. The skew symmet-

ric matrix R̆ is defined as

R̆ = � 0 − r3 r2

r3 0 − r1

− r2 r1 0
� .

2 Numerical Values
The definitions, symbols, and numerical values for a single

rigid body system �23,30� are given in Table 1.
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Table 1 Definition, symbols, and numerical values for one
rigid body

Symbol Value Unit

Mass. m 41.00 Kg
Principal moment of inertia j1 10.0 Kg m2

Principal moment of inertia j2 8.0 Kg m2

Principal moment of inertia. j3 0.4 Kg m2

Center of gravity l 0.42 m
Gravity constant g 10.0 m/s2
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A Magnetohydrodynamic Power
Panel for Space Reentry Vehicles
During reentry from space, a layer of high temperature air ��3000 K� is formed extend-
ing tens of centimeters from the surface of the vehicle, well out into the high speed flow
regime. Magnetohydrodynamics (MHD) can then be used to generate power by project-
ing magnetic fields outside the vehicle into the conducting air stream and collecting the
resulting current. Here, we analyze a multifunctional MHD panel which generates the
requisite magnetic fields, protects the vehicle from high temperatures, and is structurally
stiff and strong. The analysis shows that a magnetic system weighing approximately
110 kg can generate 0.6 MW of power for 1000 s. �DOI: 10.1115/1.2178360�

1 Introduction
This paper explores the potential for generating large amounts

of electrical power during reentry from space by exploiting mag-
netohydrodynamics �MHD�. While the analysis below will dem-
onstrate that there are several unresolved design issues that must
be addressed before MHD generation will be usable, the authors
believe that these issues are soluble given current technology. The
concept envisages a vehicle whose skin is a multifunctional struc-
ture that generates magnetic fields of sufficient strength to pro-
duce useful power, while simultaneously sustaining the high heat
flux, as well as the aerodynamic and structural loads, all at accept-
able mass. The analysis is performed at the subelement �or panel�
level. The input for design of the panel emanates from aerother-
mochemistry calculations described elsewhere �1�, which are
based upon a wedge-shaped vehicle configuration �2,3�.

Magnetohydrodynamic power generation is described by Fara-
day’s law. Since the ionized gas flowing over the surface of the
vehicle is conductive, a magnetic field extending from the vehicle
into this plasma is able to accelerate charged particles �as shown
in Fig. 1� creating a transverse current density J=�u�B �neglect-
ing, for the moment, both Hall effects and ion slip�, where � is the

conductivity of the plasma, u is the velocity of the plasma, and B
is the local magnetic flux density. For a comprehensive discussion
of power generation in a magnetohydrodynamic context, see Rosa
�4�.

The ensuing analysis of the usable power is based upon the
following assumptions:

1. Air at u=7 km/s and at densities and temperatures asso-
ciated with flow around a 12 deg half-angle wedge at
45 km altitude is seeded with NaK �properties as per �5��
imbuing the plasma enshrouding the vehicle with suffi-
cient conductivity to generate �1 MW of power per m2

of surface area, provided that the magnetic field just out-
side the vehicle exceeds 0.2 T. This assumption is based
on the aerothermodynamic model results.

2. The surface temperature of the MHD panel reaches a
“steady state” of about 1500 K.

3. During the reentry period, which is assumed to last up to
tf =1000 s, the temperature at the magnets must remain
below a maximum allowable operational limit.

The need to project a significant magnetic field beyond the
surface of the vehicle encourages the use of thin walled vehicle
structures that differ conceptually from the thick insulating �or
ablative� tiles used in current �passive� thermal protection systems
�TPS� �see, for a discussion, �6��. This paper analyzes a concep-
tual system comprised of a thin ceramic thermal barrier coating
�TBC� strongly adhered to a metallic substrate and an active cool-
ing system. Because of the thinness of the TBC, the interface
between the insulating material and the structural alloy attains
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high temperatures. The thermostructural consequences are analo-
gous to those encountered in gas turbines, which use a TBC con-
cept in conjunction with internal cooling to control the rate of
thermomechanical and oxidative damage. For gas turbine applica-
tions, a robust multilayer system has been devised with two pri-
mary attributes: It satisfies thermodynamic compatibility and is
tolerant to thermal and mechanical strain misfits between layers. It
consists of an insulating oxide, typically yttria stabilized zirconia
�YSZ�, deposited as a 100–200 �m thick coating onto an
aluminum-rich 20 �m thick intermetallic layer �referred to as a
bond coat� that slowly oxidizes to form �−Al2O3. This concept
has been chosen because YSZ and �−Al2O3 are thermodynami-
cally compatible �7,8�. The bond coat is in turn deposited on a
structural nickel-based superalloy, with the constraint that the in-
terdiffusion between the alloy and the bond coat be minimal dur-
ing the expected life of the system. The alloy is actively cooled by
air from the intake, directed through embedded serpentine chan-
nels. While the TBC surface temperature can be as high as
1425 K in this application, the underlying materials can be as
much as 200 K cooler.

A comparable TBC system is proposed for the MHD panel, but
now the structural system should be nonmagnetic, lightweight,
and capable of supporting loads at high temperature. These re-
quirements, coupled with a material selection algorithm �9,10�,
suggest titanium alloys as a primary candidate for the vehicle
skin. A bond coat concept for Ti alloys and a suitable strain-
tolerant TBC oxide have yet to be devised. For the present assess-
ment we invoke a Ti-based intermetallic bond coat that forms �
−Al2O3 upon oxidation, combined with a ternary oxide with
lower thermal conductivity than YSZ and more resistance to sin-
tering at the surface temperatures experienced during reentry. The
candidates are, respectively, TiAl3 and Gd2Zr2O7 �11�. When de-
posited as a columnar structure using electron beams, Gd2Zr2O7
has a thermal conductivity, k=0.5 W/mK �11�, but this conduc-
tivity can potentially be lowered �12� by manipulating the mor-
phology of the porosity, possibly by as much as a factor of two
�13,14�.

The TBC would be deposited onto a multifunctional panel that
performs four functions: �a� impedes heat transfer into the vehicle;
�b� supports an integral cooling system; �c� contains embedded
magnets; and �d� withstands large compressive and bending loads.
A truss core sandwich design made using a Ti alloy is proposed.
When optimized for load capacity, the weight of such panels as a
function of the load is summarized in Fig. 2, relative to a solid
panel of the same mass per unit area �15,16�. The open channels
in the core allow cooling and permit permanent or solenoid mag-
nets to be incorporated, as elaborated later.

This study explores the feasibility of using such a design to

generate power during reentry, and will propose a systematic
means for design and optimization. The analysis reveals that a
MHD panel competes effectively with other power sources in
terms of power density and energy density �see Fig. 3�.

The paper is organized in the following manner. �a� The design
concept is outlined. �b� The power that can be generated is related
to magnetic field strength and the flow conditions. �c� Magnetic
field strengths are calculated using finite elements. �d� The opti-
mization approach is described. �e� The panels are optimized and
trends in net power generated are established. The trends are used
to provide a focus for future research that addresses feasibility and
validation of the models.

2 Design Concept
The panel concept, illustrated in Fig. 4, embeds either resistive

solenoid magnets �shown here� or permanent magnets �not dis-
played�. �Superconducting magnets are discounted at this stage
due to unresolved cooling requirements.� The basic panel design
is a 50 mm thick titanium sandwich panel, comprising two 5 mm
thick faces and a 40 mm thick truss core. The reentry maneuvers
determine the maximum structural loads; these are mission-
dependent and are not explicitly analyzed. Based on previous as-
sessments of the strength and stiffness of truss core panels
�15,17�, it is believed that the proposed panel can be designed to
sustain the required loads at acceptable weight. Because the core
of the panel contains open channels, and because the truss struc-

Fig. 1 Relative directions of flow, magnetic field, and gener-
ated current

Fig. 2 Mass of truss-core panels as a function of load capac-
ity, compared to solid beams

Fig. 3 Ragone plot for various power sources for a reentry
vehicle including the proposed MHD device
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tures efficiently conduct heat from the faces, this panel enables
simultaneous thermal management by active cooling. The mag-
netic array is relatively long in the direction of the flow stream,
whereupon edge effects at the front and back can be neglected.
The array is periodic in the width direction, which increases the
magnetic field strengths �18,19�. To realize this potential, adjacent
magnets must be oriented with alternating north and south poles,
creating flux loops. By placing electrodes at the junctions between
the magnets, the current is directed to these electrodes and col-
lected, thereby generating power, as sketched in Fig. 1. Moreover,
the symmetry simplifies the calculations required. The magnetic
array is separated from the surface of the vehicle by a titanium
alloy face and a TBC layer.

For the resistive solenoid design in Fig. 4, the north and south
poles of the magnetic elements alternate. This particular array
contains two periodic elements. Electrodes for power collection
are mounted on the surface of the TBC, interlaced between the
magnet poles. The design variables are the thickness h and total
width 2w of the solenoid, the width of the arms of a single sole-
noid b, and the current density in the solenoid J0. Again, it is
assumed that the length L of the array is much larger than any
other geometric variable, permitting a two-dimensional approxi-
mation. Additional variables, such as the geometry of the high-
permeability backing plate, will not be addressed. The overall
configuration of a permanent magnet array is similar. Comparable
fields can be achieved with a variety of alternative configurations.

Thin layers of insulation are used in conjunction with active
cooling of the sandwich face. The titanium alloy face layer be-
neath the TBC uses an embedded planar heat pipe to assure ad-
equate creep strength by preventing the temperature from exceed-

ing 900 K. Active cooling protects the upper surfaces of the
magnets, preventing them from exceeding 500 K, their maximum
operational temperature. This design uses water, which is heated
from 273 K to 373 K, evaporated, and expelled from the vehicle.
There are several precedents for a cooling system of this type,
including Faghri �20�. In such a system, each kilogram of water
would expel 2.8 MJ of heat from the vehicle. The mass of the
cooling system, mcool is considered to be that of the water mw, plus
a re-circulation system �mw such that mcool= �1+��mw. Active
cooling is required to dissipate the heat associated with the opera-
tion of resistive solenoids.

3 Estimation of Power Generated
The power P0 delivered to the load, per unit volume of flow

over the vehicle, is

P0 = K�1 − K��̃u2B2 �1�

where K is the load factor which is between zero and one, �̃ is an
effective conductivity of the gas which accounts for Hall effects, u
is the magnitude of the velocity of the flow stream, and B is the
norm of magnetic flux density; B= �B�. The velocity u is perpen-
dicular to the magnetic field B. The maximum power that can be
extracted from the flow occurs when the load impedance equals
the resistance of the current passing through the air, and K=0.5.
The use of Eq. �1�, which is derived for a one-dimensional mag-
netic field, can be justified because, for the magnetic fields exam-
ined here, at all locations the vector product of the fluid velocity
and the magnetic field is directed toward the electrodes. Ion slip
effects have been shown to be negligible at 46 km altitude by

Fig. 4 Array of rectangular solenoids contained in a multifunctional truss-core sandwich structure
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Macheret et al. �1�. The remaining elements of Eq. �1� are ad-
dressed below.

3.1 Plasma Conductivity. The conductivity is a function of
the density and composition of the flow stream, the configuration
of the shock system, the gas temperature, and the presence or
absence of artificial seeding. We assume that the conductivity
arises principally because of artificial seeding, and that the seed-
ing device projects the seed 0.06 m from the vehicle surface. Cal-
culation of conductivities requires a multispecies nonequilibrium
flow model, which is beyond the scope of this paper but has been
performed by �1�. The seeding model used by �1� assumed 1% by
mass NaK entrained in the flow ahead of the MHD region; during
a 1000 s flight, this would require only 1–2 kg of seed plus some
additional mass for an injection system which would be similar to
fuel injection systems for ramjet engines. Because our purpose is
to compare magnetic arrays, we simplify by regarding the conduc-
tivity as varying linearly within the region of interest

��z� = �0��z0 − z�/z0� , �2�

where �0=650/�m and z0=0.06 m. This is consistent with gas
properties at an altitude of approximately 45 km, and reflects the
distribution of temperature and seed material through the bound-
ary layer in the calculations by Macheret et al. �1�. A comparison
of the assumed distribution of conductivity with the distribution
calculated by Macheret et al. �1� is shown in Fig. 5.

At high magnetic fields and low collision frequencies, the elec-
trons circulate around the magnetic field lines rather than migrate
between the electrodes leading to a Hall current and a significant
reduction of the effective conductivity. If the Hall parameter �e
�the ratio of the cyclotron frequency of the electrons to the colli-
sion frequency� is greater than one, the Hall effect must be taken
into account. In this case, the effective conductivity �̃ is written

�̃ =
�

1 + �e
2 =

�

1 + ��eB�2 �3�

where �e is the electron mobility �with �eB an alternate represen-
tation of the Hall parameter�. Assuming an electron mobility �e
=10/T, the Hall parameter is unity when flux density B=0.1 T.
Operation at magnetic field strengths much above 0.2 T does not
lead to a significant increase in power extraction without the in-
troduction of complex electrode segmentation and the potential of
interelectrode voltage breakdown. In this analysis it is assumed
that continuous Faraday electrodes are used. It should also be
noted that 0.2 T is close to the limit of the magnetic field strength
that can be generated from reasonable steady state electromagnet
configurations.

3.2 Flow Velocity. Various assumptions need to be made
about the flow over the vehicle.

1. The velocity increases linearly with distance z from the
vehicle surface, starting at zero and reaching the velocity
in the shock layer u0 at the edge of the boundary layer.
Outside the boundary layer, the velocity is constant and
equal to the shock layer velocity.

2. The thickness of the boundary layer, tBL=0.03 m �1�.
3. The magnetic Reynolds number is small, and hence the

flow does not signifiacntly perturb the magnetic field.

The resulting velocity function is

u�z� = �u0� z

tBL
	 if z � tBL

u0 if z � tBL

�4�

This velocity function is compared with detailed aerothermody-
namic calculations �22� in Fig. 5.

The power generated by the MHD device, per unit volume, thus
becomes

P0 =
��z�u�z�2B2

4�1 + �10B�2�
, �5�

where u�z� is given by Eq. �4�, ��z� is given by Eq. �2�, and the
magnetic flux density B is determined as detailed below. This
function is integrated over the width of a magnetic element and
the thickness of the conductive layer in order to determine the
power generated, per unit length, by a single periodic magnetic
element.

4 Magnetic Field Calculations
Finite element calculations performed with FEMLAB �23� have

been used to develop a relationship for the dependence of power
generation on the geometry and composition of the magnetic ar-
ray. These computations provide the relationship between geomet-
ric variables �thickness h, element width 2w, and solenoid arm
width b�, internal variables �current density J0 or magnetization
M0�, and the magnetic fields. The finite element results generate a
database of magnetic fields as a substitute for an explicit func-
tional relationship between the power generated and the geometric
and array parameters.

An example is provided for the electromagnetic arrays. Because
of the magnetic symmetries and antisymmetries and the assump-
tion of periodicity, as shown in Fig. 4, only half of one periodic
element needs to be modeled. Consider a magnetic field, intensity
H, and a boundary with normal n̂. Along a plane of magnetic
symmetry, the condition n̂ ·H=0 holds; �magnetic field lines do
not cross the boundary�. Similarly, on a plane of magnetic anti-
symmetry, the boundary condition is n̂�H=0 �magnetic field
lines crossing the boundary have no component parallel to the
boundary�. The magnetic flux density is given by B=�H, where
� is the permeability of the medium.

A typical result is presented in Fig. 6 for a solenoid of thickness
h=0.02 m, arm width b=0.12 m, solenoid half-width w=0.3 m,
with current density J0=15 MA/m2. The backing plate is as-
sumed to be 0.01 m thick with relative permeability �r=20,000.
It would be more realistic to use a thinner, more highly permeable
back plate, but this choice would diminish the computational ef-
ficiency. The titanium face sheet and TBC layer have relative
permeability near unity, and are not modeled explicitly. The plane
x=0 m exhibits magnetic symmetry, while the plane x=0.3 m is a
plane of magnetic antisymmetry. The region from which power
can be extracted is marked “region of high conductivity”.

For each such FEMLAB calculation, the expression �5� is inte-
grated over the region of high conductivity, and the total power
generated per periodic tile is twice the value of this integral �since
only half of one periodic element is modeled�. This power gen-

Fig. 5 Comparison of assumed and calculated conductivity
and velocity profiles with distance from vehicle surface
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eration is an input to the optimization procedure. Further finite
element calculations suggest that the power generation capacity
for a tile at the edge of a periodic array is reduced by approxi-
mately 15%. Thus, an array of N periodic tiles will produce power
per meter length equal to

Ptot = �N − 0.3�P �6�

where P refers to the integral of P0 �Eq. �5�� over the width of the
magnetic element and the thickness of the conductive layer.

5 Optimization Scheme

5.1 Power/Mass Exchange Constant. To optimize the con-

figuration of the magnetic array, we define the effective power P̂
which becomes the objective function

P̂ 
 Pnet − 	mtot �7�

In this formula, Pnet is the net power generated by the panel �the
total power generated less the power required to run the magnets�
and mtot is the total mass of the magnets plus the cooling system.
The power/mass exchange constant 	 is interpreted as the penalty
associated with each unit of mass of the MHD device. Accord-

ingly, the effective power P̂ is the difference between the net
power generated and the total penalty associated with the mass of
the device. For specified 	, the optimal design is that maximizing

the effective power P̂.
If 	 is progressively varied, a locus of optimal designs in

�mtot , Pnet� space arises, as shown in Fig. 7. Note that a minimum
mass of magnets mmin is required before any power can be gen-
erated. Graphically, the net power density �the ratio of net power
to total mass� is maximized at the point where a ray from the

origin is tangent to the locus, which implies that the slope of the
locus must be equal to the net power density. At every point on the

locus, since P̂ is a maximum


P̂ = 
Pnet − 	
mtot = 0 �8�

such that 	 is the slope of the locus. Hence we must find the point

where the net power density is equal to 	. When P̂=0

Fig. 6 Typical FEMLAB calculated result showing magnetic flux density „T… „with bar to the left… and a representative set of
magnetic field lines. This configuration is for a solenoid with current density J0=15 MA/m2, of thickness h=0.02 m, arm width
b=0.12 m, and solenoid half-width w=0.3 m. Note that the magnetic flux density in the back plate is very high, while the
magnetic flux density in the vehicle in negligible.

Fig. 7 The locus of optimal designs in „mtot ,Pnet… space, show-
ing the construct to obtain the maximum net power density.
The maximum net power density is found when a ray from the
origin is tangent to the locus.
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�	�P̂=0 =
Pnet

mtot
= 	* �9�

Thus 	 can also be interpreted as the maximum net power density

by finding the value of 	=	* for which the maximum of P̂=0.

5.2 The Optimization. Optimization involves an exchange
between total mass �the MHD device plus the coolant� and power
generation, dependent upon flight time tf and heat flux q. Because
the mass of the structural elements and insulation will be present
whether or not a MHD device is incorporated, this mass need not
be considered for optimization. To determine the number of peri-
odic elements N �noting that fractional elements are not permis-
sible�, the maximum width of the array is taken to be 1.2 m. The
power surplus Pnet �per unit length� is the power generated Ptot
less the power expended by the magnetic array Pexp. For perma-
nent magnets Pexp=0, while for a resistive solenoid system

Pexp = 2N
J0

2hb

�s
�10�

where �s is the conductivity of the solenoid material �at 373 K,
the expected operating temperature of the solenoids, for copper
�s=4.6�107/�m, while for aluminum, �s=2.8�107/�m�. A re-
sistive electromagnet generates heat equal to the power required
to run the solenoid Pexp.

The mass of the solenoid array �per unit length� is

mmag = 2Nbh� �11�

where � is the density of the material used in the array �for copper,
�=8960 kg/m3, and for aluminum, �=2702 kg/m3�, and the mass
of a neodymium-iron-boron permanent magnet array is

mmag = 2Nwh� �12�

with �=7500 kg/m3.
The steady-state flow of heat through the TBC is dictated by its

thermal conductivity k, the difference in temperature between the
two sides �T, and its thickness tTBC

Hsurf = 2Nw
k�T

tTBC
�13�

where 2Nw is the total width of the panel. Transients are consid-
ered to be of short duration. The temperature difference is consid-
ered to be governed by the temperature attained on the external
surface of the TBC �1500 K�, ascertained by the aerothermody-
namic calculations,1 and the maximum temperature that a titanium
alloy can sustain to assure adequate creep strength �900 K�. The
total heating input is

Htot = Hsurf + Pexp �14�
The mass of the cooling system is

mcool = �1 + ��
Htottf

Cwater
�15�

where Cwater is the energy per unit mass to heat and evaporate the
water. It is assumed that the water vapor is immediately vented
from the vehicle through an insulated system, such that no further
heating of the vehicle occurs. The total mass of the system is thus
mtot=mmag+mcool, and the effective power generation can be
evaluated for each candidate design. Note that the quantities cal-
culated here are per unit length of the MHD panel.

6 Optimization Results
The initial optimization will be performed using the parameters

in Table 1. Thereafter the separate influences of several param-
eters will be explored.

A wide search through probable candidates for geometric and
internal variables �including all combinations of those in Table 2�
indicates that an optimal design is achieved by using an aluminum
solenoid with element width 2w=0.6 m, solenoid arm width b
=0.12 m, solenoid thickness h=0.02 m, TBC thickness tTBC
=0.0025 m, and current density J0=12 MA/m2 �equivalent to
28,800 amp turns�. This array generates a net power Pnet
=538 kW/m. The total power generated is 588 kW/m, with
50 kW/m expended to power the solenoid. The mass of the sole-
noid is 26 kg/m, and the mass of coolant is 79 kg/m. At very
long flight times, tf �6000 s, copper becomes preferable to alu-
minum because of its higher conductivity. Permanent magnetic
arrays are uniformly rejected because the magnetic fields are not
sufficiently large to be competitive.

The procedure is illustrated by results for the net power/total
mass at fixed TBC thickness �Fig. 8� with each curve representing
a specific thermal conductivity. Each point on every curve repre-
sents a design with maximum effective power. Note that the
shapes of the curves are similar to that shown in Fig. 7.

Variations of net power density with power are illustrated in
Fig. 9. This plot shows that power density can be significantly
increased by increasing the thickness of the TBC. It is also appar-
ent that there is a maximum net power density for each value of
TBC thickness.

Trends in the maximum are reexpressed in Fig. 10, using the
loci through the maxima of each curve in Fig. 9. This result pro-
vides direct guidelines for the material to be used as the thermal
barrier �based on the thermal conductivity range� and the thick-
ness required to achieve the maximum net power density. It is

1Calculations by Candler �22� indicate that the total heating rate on the vehicle
surface is approximately in equilibrium with radiative cooling and heat flux into the
vehicle when the surface temperature is 1500 K.

Table 1 Standard values for optimization parameters

Parameter Value

Exchange constant 	 5 kW/kg
Flight time tf 1000 s
TBC thermal conductivity k 0.5 W/mK
Temperature gradient through TBC �T 600 K
Cooling system mass coefficient � 0.15
Total panel width wtot 1.2 m
Shock layer velocity u0 6 km/s
Plasma conductivity �0 100/�m
Reference TBC thickness 2.5 mm
Potassium seeding �by mass� 1%

Table 2 Values of design parameters used in the finite element
simulations. Note that the values used for the solenoid arm
width b are dependent upon the solenoid half-width w; b is
taken to be the integral part of the calculation.

Design parameter Values simulated

Solenoid half-width w �m� 0.1, 0.12, 0.15, 0.20,
0.25, 0.30, 0.60

Solenoid thickness h �m� 0.01, 0.015, 0.02, 0.0225,
0.025, 0.03, 0.04, 0.045

Solenoid arm width b �m� w/7 x �1, 1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5, 6�

Thickness of TBC layer tTBC �mm� 1, 1.5, 2, 2.25, 2.5, 2.75,
3, 3.5, 4, 4.5, 5

Current density J0�MA/m2� 10, 11.25, 12, 13.25, 14.25, 15, 15.5,
16.25, 17.5, 20, 22.5, 25, 30, 35, 40
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clear that maximum net power density increases rapidly as k is
decreased below 0.2 W/mK; when k is very low, the TBC thick-
ness becomes less important.

Varying the number of magnetic elements reveals that the maxi-
mum effective power occurs when N=2. This optimum arises be-
cause the increase in the flux density near the surface of the ve-
hicle upon increasing N is counteracted by the rate at which the
flux density declines with distance from the vehicle. The enhance-
ment in net power enabled by reducing the extra weight of the
cooling system is indicated on Fig. 11. At low 	, the design is not
sensitive to the cooling system efficiency, because the additional
mass of cooling water does not carry a large weight penalty. As 	
increases, the design becomes more sensitive to cooling system
efficiency. This figure expresses the benefit of designing a light-
weight pumping system.

7 Implications
The analysis has demonstrated that MHD power panels located

within a re-entry vehicle have the potential to generate usable

power. The optimization indicates that it is possible to design a
1.2 m wide panel which will generate 0.6 MW/m length at a total
mass of approximately 110 kg/m. However, stringent technologi-
cal challenges need to be satisfied before such a panel can be
brought to fruition.

1. Effective injection and mixing of the seed material are
essential and remain to be demonstrated.

2. Water must be stored on board and a lightweight recircu-
lation system developed that pumps the water through
the panel and then ejects it from the vehicle.

3. A thermal barrier material with low thermal conductivity,
such as Gd2Zr2O7, must be deposited on the surface of
the panel at unprecedented thickness. It must resist spal-
ling during manufacturing, as well as when subject to a
thermal gradient on reentry.

4. A bond coat must be developed for titanium alloys that
survives manufacturing and remains intact when exposed
to reentry.

The importance of thermal management is emphasized: For the
example cases, approximately 75% of the total mass of the MHD

Fig. 8 Net power generation versus total mass at constant
TBC thickness tTBC=2.5 mm for varying TBC thermal
conductivity

Fig. 9 Net power density as a function of net power for con-
stant TBC thermal conductivity k=0.5 W/mK and varying TBC
thickness

Fig. 10 Maximum net power density as a function of TBC ther-
mal conductivity for varying TBC thickness

Fig. 11 Variation of net power generation with the cooling sys-
tem mass coefficient �
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system is coolant. Preliminary materials and manufacturing as-
sessments indicate that Gd2Zr2O7 having the requisite thickness
can be deposited onto superalloys by using plasma-assisted, di-
rected vapor deposition �DVD� �24�. It remains to determine
whether Gd2Zr2O7 can be deposited on titanium alloys at the re-
quired thickness and pore structure and adhere, as well as resist
delamination in a thermal gradient. Depositing a bond coat on the
alloy that oxidizes to form �−Al2O3, such as TiAl3, would be
essential. These materials and manufacturing issues would need to
be clearly specified and resolved before embarking on MHD panel
development.
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Electromagnetoelastic Dynamic
Response of Transversely
Isotropic Piezoelectric Hollow
Spheres in a Uniform Magnetic
Field
An analytical method is presented to solve the problem of electromagnetoelastic dynamic
response of transversely isotropic piezoelectric hollow spheres in a uniform magnetic
field, subjected to arbitrary mechanical load and electric excitation. Exact expressions
for the dynamic responses of stresses, perturbation of magnetic field vector, electric
displacement, and electric potential in piezoelectric hollow spheres are obtained by
means of Hankel transform, Laplace transform and their inverse transforms. An interpo-
lation method is applied to solve the Volterra integral equation of the second kind in-
volved in the exact expression, which is caused by interaction between electric-elastic
field and electric-magnetic field. Thus, an analytical solution for the problem of dynamic
response of a transversely isotropic piezoelectric hollow sphere in a uniform magnetic
field is obtained. Finally, some numerical examples are carried out, and may be used as
a reference to solve other dynamic coupled problems of electromagneto-elasticity.
�DOI: 10.1115/1.2178361�

1 Introduction
The analyses for dynamic problems of elastic bodies are impor-

tant and interesting research fields for engineers and scientists.
Being the common structural form, the applications for trans-
versely isotropic hollow spheres have continuously increased in
some engineering areas, including aerospace, offshore and subma-
rine structures, chemical vessel, and civil engineering structures.
The interaction of electric potential, electric displacement, pertur-
bation of magnetic field vector, and elastic deformation in spheri-
cal structures is studied due to its many engineering applications,
such as geophysics for understanding the effect of the Earth’s
magnetic field on seismic waves, damping of acoustic waves in a
magnetic field, emissions of electromagnetic radiations from
nuclear devices, development of a highly sensitive superconduct-
ing magnetometer, electrical power engineering, optics, etc.

For nonpiezoelectric media, Hu �1� first initiated using a sepa-
ration method and presented a general theory of elasticity for
spherically isotropic medium. Many subsequently important
analyses were inspired based on Hu’s elegant investigations on
some static problems such as a concentrated force in an infinite
medium, stress concentration due to a spherical cavity, and a
steadily rotating shell. Hata �2–4� obtained the transient thermal
stress responses in a uniformly heated isotropic spherical shell and
solid sphere, as well as transversely isotropic solid sphere by us-
ing the ray theory. Sherief and Ezzat �5� used the Laplace trans-
form technique to find the distribution of thermal stresses and
temperature in a generally thermoelastic and electrically conduct-
ing half space under sudden thermal shock and permeated by a

primarily uniform magnetic field. By means of the Hankel trans-
form and Laplace transform technique, Wang �6� obtained dy-
namic thermostress-concentration effect in a spherically isotropic
sphere. While for piezoelectric media, Heyliger and Wu �7� stud-
ied the displacement and electrostatic potential fields in a static
and free vibration response of layered piezoelectric spheres. By
virtue of the separation of variables method, Ding et al. �8,9�
investigated transient responses of a pyroelectric hollow sphere
under radial deformation and a functionally graded pyroelectric
hollow sphere for spherically symmetric problems. Utilizing the
same method of Ref. �6�, Dai and Wang �10� presented an ana-
lytical solution for the interaction of electric potentials, electric
displacements, elastic deformations and mechanical loads, and de-
scribed electromagnetoelastic responses and perturbation of mag-
netic field vector in a piezoelectric hollow cylinder subjected to
sudden mechanical load and electric potential. Recently, Dai and
Wang �11,12� investigated transient wave propagations in piezo-
electric hollow spheres and laminated piezoelectric spherical
shells subjected to thermal shock and electric excitation. However,
the investigation of electromagnetoelastic dynamic response of
transversely isotropic piezoelectric spheres in a uniform magnetic
field is a more complex problem that has not been investigated as
extensively as it deserves so far.

In this paper, an analytical method is developed for electromag-
netoelastic interactions in transversely isotropic piezoelectric hol-
low spheres placed in a uniform magnetic field, subjected to me-
chanical load and electric excitation. The electromagnetoelastic
dynamic equation of the piezoelectric hollow spheres may be de-
composed into a quasistatic term and a dynamic term. First, using
the method described by Lekhnitskii �13�, the quasistatic question
can be solved. Second, the solution to the inhomogeneous dy-
namic question is obtained by utilizing Hankel transform �Cinelli
�14��, Laplace transform and their inverse transforms. Thus, the
exact solution for electromagnetoelastic dynamic responses of the
transversely isotropic piezoelectric hollow spheres is obtained and
this solution is illustrated with numerical examples to demonstrate
the methodology is simple and effective.
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2 Basic Formulations of the Problem
A transversely isotropic piezoelectric hollow sphere placed ini-

tially in a uniform magnetic field H��0,0 ,Hu�. A spherical coordi-
nate system �r ,� ,�� with the origin identical to the center of the
sphere is used for a spherically symmetric problem where the
transversely isotropic piezoelectric hollow sphere with internal ra-
dius a and external radius b, so the strain-displacement relations
are expressed as

�rr =
�u�r,t�

�r
, ��� = ��� =

u�r,t�
r

, �r� = ��� = �r� = 0 �1�

where �ij �i , j=r ,� ,�� are strain components, and u�r , t� expresses
a radial displacement. The constitutive relations of the spherically
transversely isotropic pyroelectric medium are expressed as
�Sinha �15�; Chen and Shioya �16��

�r = c11�rr + 2c12��� + e11
��

�r
�2a�

�� = c12�rr + �c22 + c23���� + e12
��

�r
�2b�

Dr = e11�rr + 2e12��� − �11
��

�r
�2c�

where cij, e1i, �i=1,2 , j=1,2 ,3�, and �11 are elastic constants,
piezoelectric constants, and dielectric constants, respectively. �i,
�i=r ,��, and Dr are the component of stress and radial electric
displacement, respectively.

Assuming that the magnetic permeability � �Ezzat �17�� of the
transversely isotropic piezoelectric hollow sphere equals the mag-
netic permeability of the medium around it, the governing elec-
trodynamic Maxwell equations �John �18�� are given by

J� = � � h�, � � e� = − �
�h�

�t
, div h� = 0,

�3�

e� = − �� �U�

�t
� H��, h� = � � �U� � H��

Applying a uniform magnetic field vector H��0,0 ,Hu� in the
hollow spherical coordinate �r ,� ,�� system to Eq. �3�, yields

U� = �u�r,t�,0,0�, e� = − ��0,Hu

�u

�t
,0� �4a�

h� = �0,0,hu�, J� = �0,−
�hu

�r
,0�, hu = − Hu� �u

�r
+

2u

r
�

�4b�
In the absence of free charge density, the charge equation of

electrostatics is expressed as �Dunn and Taya �19��

�Dr�r,t�
�r

+
2Dr�r,t�

r
= 0 �5�

From Eq. �5�, we obtain

Dr�r,t� =
1

r2d�t� �6�

where d�t� is an undetermined function to time t.
Utilizing Eq. �6�, we rewrite Eq. �2c�, gives

��

�r
=

e11

�11

�u

�r
+

2e12

�11

u

r
−

1

�11

d�t�
r2 �7�

Then, substituting Eq. �7� into Eqs. �2a� and �2b�, yields

�r = �c11 +
e11

2

�11
� �u

�r
+ 2�c12 +

e11e12

�11
�u

r
−

e11

�11

d�t�
r2 �8a�

�� = �c12 +
e11e12

�11
� �u

�r
+ �c22 + c23 +

2e12
2

�11
�u

r
−

e12

�11

d�t�
r2

�8b�
The electromagnetoelastic dynamic equation of the transversely

isotropic piezoelectric hollow sphere is �Lekhnitskii �13��

��r

�r
+

2��r − ���
r

+ fu = 	
�2u

�t2 �9�

where 	 is the mass density, fu is defined as Lorentz’s force �John
�18��, which can be written as

fu = ��J� � H�� = �Hu
2 �

�r
� �u

�r
+

2u

r
� �10�

Substituting Eqs. �8� into the motion equation of a spherically
symmetric problem, the basic displacement equation of electro-
magnetoelastic motion of the transversely isotropic piezoelectric
hollow sphere is expressed as

�2u�r,t�
�r2 +

2

r

�u�r,t�
�r

−
M2u�r,t�

r2 =
1

CL
2

�2u�r,t�
�t2 + I

d�t�
r3 �11�

where

M2 =
2��c22 + c23 − c12 + �Hu

2��11 + 2e12
2 − e11e12�

�m + �Hu
2��11

,

I = −
2e12

�m + �Hu
2��11

, m = c11 +
e11

2

�11
, CL

2 =
m + �Hu

2

	
�12�

Boundary conditions of stress and electric are, respectively, ex-
pressed as

�r�a,t� = pa�t�, �r�b,t� = pb�t� �13a�

��a,t� = �a�t�, ��b,t� = �b�t� �13b�
The transversely isotropic piezoelectric hollow sphere at rest

prior to time t=0 and the initial conditions are

u�r,t� =
�u�r,t�

�t
= 0 at t = 0 �14�

3 Solution of the Problem
Assume that the general solution of the basic displacement Eq.

�11� may be expressed in the form �Eringen and Suhubi �20�; Dai
and Wang �10–12��

u�r,t� = uq�r,t� + ud�r,t� �15�

where uq�r , t� and ud�r , t� are the quasistatic solution and the dy-
namic solution of Eq. �11�, respectively.

First, the quasistatic solution uq�r , t� must satisfy the following
equation and the corresponding inhomogeneous boundary
conditions

�2uq�r,t�
�r2 +

2

r

�uq�r,t�
�r

−
M2

r2 uq�r,t� = I
d�t�
r3 �16a�

� �uq�r,t�
�r

+ h
uq�r,t�

r
�

r=i

= �i�t� �i = a,b� �16b�

where
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h =
2�c12�11 + e11e12�

m�11
, �i�
� =

1

m
� e11

�11

d�t�
i2 + pi�t��, �i = a,b�

�17�

Using the method in Lekhnitskii �13�, the general solution of Eq.
�16a� is expressed as

uq�r,t� = A1rn−0.5 + A2r−�n+0.5� −
I

M2

d�t�
r

�18�

where A1 and A2 are unknown constants which can be determined
by making use of the inhomogeneous boundary conditions �16b�,
and n=	0.25+M2. Thus, �18� is rewritten as

uq�r,t� = B1�r�pa�t� + B2�r�pb�t� + B3�r�d�t� �19�

where

B1�r� =
b−�n+1.5�

�n − 0.5 + h�L1m
rn−0.5 +

bn−1.5

�n + 0.5 − h�L1m
r−�n+0.5�

B2�r� =
− a−�n+1.5�

�n − 0.5 + h�L1m
rn−0.5 +

− an−1.5

�n + 0.5 − h�L1m
r−�n+0.5�

B3�r� =
a−2b−�n+1.5� − b−2a−�n+1.5�

�n − 0.5 + h�L1
L2rn−0.5

+
a−2bn−1.5 − b−2an−1.5

�n + 0.5 − h�L1
L2r−�n+0.5� −

I

M2r

L1 = an−0.5b−�n+1.5� − bn−0.5a−�n+1.5�, L2 =
�h − 1�I

M2 +
e11

m�1

�20�

Second, substituting Eq. �15� into Eq. �9� and utilizing Eq. �13�
provides an inhomogeneous dynamic equation with homogeneous
boundary conditions and the corresponding initial conditions for
ud�r , t�

�2ud�r,t�
�r2 +

2

r

�ud�r,t�
�r

−
H2

r2 ud�r,t� =
1

CL
2� �2ud�r,t�

�t2 +
�2uq�r,t�

�t2 �
�21a�

� �ud�r,t�
�r

+ h
ud�r,t�

r
�

r=a,b

= 0 �21b�

ud�r,0� + uq�r,0� = 0,
�ud�r,0�

�t
+

�uq�r,0�
�t

= 0 �21c�

For solving the ud�r , t�, Eq. �21a� may be transformed into a
normal Bessel equation by assuming

ud�r,t� = r−0.5f�r,t� �22�

Substituting Eq. �22� into Eqs. �21�, yields

�2f�r,t�
�r2 +

1

r

� f�r,t�
�r

−
N2

r2 f�r,t� =
1

CL
2� �2f�r,t�

�t2 +
�2uq1�r,t�

�t2 �
�23a�

� f�a,t�
�r

+ haf�a,t� = 0,
� f�b,t�

�r
+ hbf�b,t� = 0 �23b�

f�r,0� + uq1�r,0� = u1,
� f�r,0�

�t
+

�uq1�r,0�
�t

= v1 �23c�

where

uq1�r,t� = C1�r�pa�t� + C2�r�pb�t� + C3�r�d�t�,

Ci�r� = r0.5Bi�r�, �i = 1,2,3� �24a�

N2 = 0.25 + M2, ha =
�h − 0.5�

a
, hb =

�h − 0.5�
b

�24b�

Let uq1�r , t�=0 in Eq. �23a�, then this homogeneous equation
with homogeneous boundary conditions �23b� may be solved by
assuming

f�r,t� = g�r�exp�i�t� �25�
From Eqs. �23� and �25�, we have the following eigenequation:

JaYb − JbYa = 0 �26�
where

Ja = kiJN� �kia� + haJN�kia� Jb = kiJN� �kib� + hbJN�kib�

Ya = kiYN� �kia� + haYN�kia� Yb = kiYN� �kib� + hbYN�kib� �27�

and JN�kir� and YN�kir� are, respectively, the first and the second
kind of the Nth-order Bessel function, ki �i=1,2 , . . . ,n� express a
series of positive roots of the natural eigenequation �26�, and the
natural frequencies are �i=CLki.

From Cinelli �14�, define f̄�ki , t� as the finite Hankel transform
of f�r , t�, yields

f̄�ki,t� = H�f�r,t�� =

a

b

rf�r,t�GN�kir�dr �28�

Then the inverse transform to Eq. �28� is given by

f�r,t� = �
ki

f̄�ki,t�
F�ki�

GN�kir� �29�

where

F�ki� =

a

b

r�GN�kir��2 dr =
Ja

2

Jb
2

2

ki
2�2�hb

2 + ki
2�1 − � N

kib
�2�


−
2

ki
2�2�ha

2 + ki
2�1 − � N

kia
�2�
 �30a�

GN�kir� = JN�kir�Ya − JaYN�kir� �30b�
Applying the finite Hankel transform �28� to Eq. �23a� and

utilizing the homogeneous boundary condition �23b�, yields

− ki
2 f̄�ki,t� =

1

CL
2� �2 f̄�ki,t�

�t2 +
�2ūq1�ki,t�

�t2 � �31�

where

ūq1�ki,t� = H�uq1�r,t�� �32�
Applying Laplace transform to the two sides of Eq. �31� and uti-
lizing the initial conditions �23c�, yields �the detailed solution
processes is given in the Appendix�

f̄*�ki,L� = − uq1
* �ki,L� +

�i
2

��i
2 + L2�

ūq1
* �ki,L� �33�

where L is the parameter of Laplace transform.
The inverse Laplace transform of Eq. �33� is expressed as

f̄�ki,t� = − ūq1�ki,t� + �i�ūq1�ki,t�sin��it�� �34�
where

ūq1�ki,t�sin��it� =

0

t

ūq1�ki,
�sin��i�t − 
��d
 �35�

Substituting the first item of Eq. �24a� into Eq. �32�, yields

ūq1�ki,t� = C̄1�ki�pa�t� + C̄2�ki�pb�t� + C̄3�ki�d�t� �36�

where C̄j�ki�=H�Cj�r�� , �j=1,2 ,3�.
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Substituting Eq. �36� into Eq. �35�, and utilizing Eq. �34�, gives

f̄�ki,t� = C̄1�ki�I1i�ki,t� + C̄2�ki�I2i�ki,t� + C̄3�ki�I3i�ki,t� �37�

where

I1i�ki,t� = − pa�t� + �i

0

t

pa�
�sin��i�t − 
��d
 �38a�

I2i�ki,t� = − pb�t� + �i

0

t

pb�
�sin��i�t − 
��d
 �38b�

I3i�ki,t� = − d�t� + �i

0

t

d�
�sin��i�t − 
��d
 �38c�

Combining Eqs. �37� and �29�, the dynamic solution for inho-
mogeneous Eq. �23� with homogeneous boundary conditions is
given by

f�r,t� = �
ki

GN�kir�
F�ki�

�C̄1�ki�I1i�ki,t� + C̄2�ki�I2i�ki,t� + C̄3�ki�I3i�ki,t��

�39�
Thus, utilizing Eqs. �15�, �19�, �22�, and �39�, the solution of

the basic displacement equation of electromagnetoelastic motion
in the transversely isotropic piezoelectric hollow sphere is ex-
pressed as

u�r,t� = B1�r�pa�t� + B2�r�pb�t� + B3�r�d�t�

+ �
ki

r−0.5GN�kir�
F�ki�

�C̄1�ki�I1i�ki,t� + C̄2�ki�I2i�ki,t�

+ C̄3�ki�I3i�ki,t�� �40�

It is noted that in the above expression d�t� still is an unknown
function that is the relation to the electric displacement. It is nec-
essary to determine d�t� in the following. Integrating Eq. �7� and
utilizing the corresponding electric boundary conditions �13b�,
yields

��r,t� = 
1�r�pa�t� + 
2�r�pb�t� + 
3�r�d�t� + �
i


4i�r�Fi�t�

+ �a�t� �41�

where


1�r� =
e11

�11
�B1�r� − B1�a�

− �
ki

�r−0.5GN�kir� − a−0.5GN�kia��
F�ki�

B̄1�ki��
+

2e12

�11



a

r
1

r�B1�r� − �
ki

r−0.5GN�kir�
F�ki�

B̄1�ki��dr

�42a�


2�r� =
e11

�11
�B2�r� − B2�a�

− �
ki

�r−0.5GN�kir� − a−0.5GN�kia��
F�ki�

B̄2�ki��
+

2e12

�11



a

r
1

r�B2�r� − �
ki

r−0.5GN�kir�
F�ki�

B̄2�ki��dr

�42b�


3�r� =
e11

�11
�B3�r� − B3�a�

− �
ki

�r−0.5GN�kir� − a−0.5GN�kia��
F�ki�

B̄3�ki��
+

2e12

�11



a

r
1

r�B3�r� − �
ki

r−0.5GN�kir�
F�ki�

B̄3�ki��dr +
1

�11

1

r

�42c�


4i�r� =
e11

�11

�r−0.5GN�kir� − a−0.5GN�kia��
F�ki�

+
2e12

�11



a

r
1

r1.5

GN�kir�
F�ki�

dr

�42d�

Fi�t� = F1i�t� + B̄3�ki��i

0

t

d�
�sin��i�t − 
��d
 �42e�

F1i�t� = B̄1�ki��i

0

t

pa�
�sin��i�t − 
��d


+ B̄2�ki��i

0

t

pb�
�sin��i�t − 
��d
 �42f�

When r=b, Eq. �41� can be rewritten as

�b�t� = 
1�b�pa�t� + 
2�b�pb�t� + 
3�b�d�t� + �
i


4i�b�Fi�t�

+ �a�t� �43�

Substituting t=0 into Eq. �43�, yields

d�0� =

�b�0� − �a�0� − 
1�b�pa�0� − 
2�b�pb�0� − �
i


4i�b�Fi�0�


3�b�
�44�

Substitution Eq. �42d� into Eq. �43�, gives

��t� = M1d�t� + �
i

M2i

0

t

d�
� sin��i�t − 
��d
 �45�

where

��t� = �b�t� − �a�t� − 
1�b�pa�t� − 
2�b�pb�t� − �
i


4i�b�F1i�t�

M1 = 
3�b�, M2i = 
4i�b�B̄3�ki��i �46�
It is seen that Eq. �45� is Volterra integral equation of the second
kind �Kress �21��. In the following, Eq. �45� is solved by using the
recursion formula based on linear interpolation function. Dividing
the time interval �0, t� into n subintervals, the discrete time points
are t0=0, t1 , t2¯ tn. The interpolation function at the time interval
�tj−1 , tj� is expressed as

d�t� = � j�t�d�tj−1� + � j�t�d�tj�, �j = 1,2 ¯ n� �47�
where

� j�t� =
t − tj

tj−1 − tj
, � j�t� =

t − tj−1

tj − tj−1
, �j = 1,2 ¯ n� �48�

Substituting Eq. �47� into Eq. �45�, gives

��tj� = M1d�tj� + �
i

M2i�
k=1

j

�Rijkd�tk−1� + Sijkd�tk�� �49�

where

68 / Vol. 74, JANUARY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Rijk =

tk−1

tk

�k�
�sin��i�t − 
��d


Sijk =

tk−1

tk

�k�
�sin��i�t − 
��d
 ,

�k = 1,2 ¯ j, j = 1,2 ¯ n�

�50�

Solving Eq. �49�, gives

d�tj�

=

��tj� − �
i

M2i�
k=1

j−1

�Rijkd�tk−1� + Sijkd�tk�� − d�tj−1��
i

M2iRijj

M1 + �
i

M2iSijj

,

�j = 1,2 ¯ n� �51�

Substituting d�0� in Eq. �44� into Eq. �51�, d�tj�, �j=1,2¯n�
can be determined step by step. Thus, the exact expression of the
dynamic displacement u�r , t� is obtained. The dynamic stresses
�r�r , t�, ���r , t�, the perturbation of magnetic field vector hu�r , t�,
the dynamic electric displacement Dr�r , t�, and the dynamic elec-
tric potential ��r , t� are easily obtained from Eqs. �4� to �8�.

4 Numerical Examples and Discussions
Electromagnetoelastic interaction in a transversely isotropic pi-

ezoelectric hollow sphere placed in a uniform magnetic field, sub-
jected to mechanical load and electric excitation is considered. In
numerical calculations, material constants for the transversely iso-
tropic piezoelectric hollow sphere are taken as �Ding et al. �22��:
c11=c33=110.0 GPa, c22=220 GPa, c12=77.8 GPa, c13=c23
=74.3 GPa, e12=15.1�C/m2�, e11=e13=−5.2�C/m2�, �11=5.62
�10−9�C2/Nm2�, and 	=4350�Kg/m2�. In all numerical ex-
amples, magnetic permeability is taken as �=4��10−7�H/m�
and magnetic intensity is taken as Hz=3�108�A/m�, the dimen-
sionless radial coordinate R= �r−a� / �b−a�, the dimensionless
time 
=CLt / �b−a�, the response time is taken as 
=10, and the
ratio of the external radii to the internal radii is taken as b /a=2.
�See Fig. 1.�

Example 1. Electromagnetoelastic interaction in the trans-
versely isotropic piezoelectric hollow sphere, the boundary condi-
tions are

�r�a,t� = p0H�t�, �r�b,t� = 0, �a�a,t� = 0, �b�b,t� = 0

�52�

where H�t� expresses the Heaviside function, and �i
*=�i / p0

�i=r ,��, hu
*=hu / �p0Hu�, Dr

*=Dr / p0, and �*=� / p0 are introduced
in Figs. 2–6.

In this example, the response time is taken as 
=10, when the
responded time is taken as t�1, because of the small wall thick-
ness a /b=0.5, and the effects of wave reflected between the inner
wall and outer wall have been produced. Figures 2 show, respec-
tively, the response histories of radial stresses at R=0, 0.1, 0.5,
and 1. From Figs. 2, it is seen that the radial stresses at R=0 and
R=1 are, respectively, equal to −1 and zero, which satisfies the
internal and external boundary conditions �52�, so the correction
of the numerical results is clarified in this respect. The dynamic
response histories of radial stresses at R=0.1 and R=0.5 oscillate
dramatically because of the reflected effect of wave between the
inner wall and outer wall. Figures 3–5 show, respectively, the
dynamic response histories of hoop stresses, perturbation of mag-
netic field vector, and electric displacement at R=0, 0.5, and 1, it
is seen easily from Figs. 3–5 that the peak values of hoop stresses,
perturbation of magnetic field vector, and electric displacement
decrease gradually from inner wall to outer wall at the identical
time 
. From Fig. 6, it is also seen that the electric potential �* at
the internal and external boundary equal zero, which satisfy the

Fig. 1 A geometric graph of the piezoelectric hollow sphere
placed in a uniform magnetic field, subjected to mechanical
load and electric excitation

Fig. 2 Response histories of the dynamic radial stresses �r
*,

where R= „r−a… / „b−a…, �=CLt / „b−a…, pa„t…=p0, and �r
*=�r /p0.

„a… R=0 and R=0.1; „b… R=0.5 and R=1.
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prescribed electric boundary conditions in Eq. �52�, and the dy-
namic response histories of electric potential at R=0.5 are similar
to that of the radial stress as shown in Fig. 2�b�.

Example 2. Consider that the electromagnetoelastic interaction
in the transversely isotropic piezoelectric hollow sphere is induced
by electric excitation. The corresponding boundary conditions are
expressed as

�r�a,t� = 0, �r�b,t� = 0, �a�a,t� = 0, �b�b,t� = �0H�t�
�53�

In the calculation, �i
*=�i /�0 �i=r ,��, hu

*=hu / ��0Hu�, Dr
*

=Dr /�0, and �*=� /�0 are introduced.
From Figs. 7 and 11, it is seen that the radial stresses and the

electric potential at the boundaries R=0, 1 satisfy the given
boundary conditions �53�. Figures 7–11 show that except the
points at the given boundary condition, dynamic responses at
other points oscillate dramatically around the corresponding qua-
sistatic values because of the effects of wave reflected between the
inner wall and outer wall. From Fig. 7, it is seen that the dynamic
response histories of radial stresses at R=0.1 and R=0.5 are simi-
lar to that of the radial stress as shown in Figs. 2, Comparing Fig.
7 and Figs. 2, it is seen that the respondent amplitude of radial

Fig. 3 Response histories of the dynamic hoop stresses ��
* at

R=0, R=0.5, and R=1, where R= „r−a… / „b−a…, �=CLt / „b−a…,
pa„t…=p0, and ��

* =�� /p0

Fig. 4 Response histories of perturbation of magnetic field
vector hu

* at R=0, R=0.5, and R=1, where R= „r−a… / „b−a…, �
=CLt / „b−a…, pa„t…=p0, and hu

* =hu / „Hup0…

Fig. 5 Response histories of the dynamic electric displace-
ments Dr at R=0, R=0.5, and R=1, where R= „r−a… / „b−a…, �
=CLt / „b−a…, pa„t…=p0, and Dr

*=Dr /p0

Fig. 6 Distributions of the dynamic electric potentials �* at
R=0, R=0.5, and R=1, where R= „r−a… / „b−a…, �=CLt / „b−a…,
pa„t…=p0, and �*=� /p0

Fig. 7 Response histories of the dynamic radial stresses �r
* at

R=0, R=0.1,R=0.5, and R=1, where R= „r−a… / „b−a…, �=CLt / „b
−a…, �b„t…=�0, and �r

*=�r /�0
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stress caused by the sudden unit electric potential is larger than
that caused by the sudden unit pressure. Figures 8–10 show, re-
spectively, the dynamic response histories of hoop stresses, per-
turbation of magnetic field vector and electric displacement at R
=0, 0.5, and 1. From Fig. 8, it is seen that the amplitude of hoop
compression stress caused by the sudden unit electric potential is
smaller than that of hoop tension stress. It is seen easily in Fig. 9
that perturbation of magnetic field vector show oscillate around
the vicinity of zero value at different radial point. The dynamic
response histories of electric displacement at R=0, 0.5, and 1 are
negative as shown in Fig. 10. Figure 11 depicts the response of
electric potential �* along radius is weak non-linear at different
nondimensional time 
.

Example 3. For the sake of comparison, we consider a purely
elastic hollow sphere with the same material constants and bound-
ary conditions as given Example 1. In the calculation, all dimen-
sionless quantities are introduced in Figs. 12 and 13 as given
above.

Figures 12 and 13 show the responses of �r
* and ��

* at R=0.5
�the middle surface� in the piezoelectric and elastic hollow sphere
due to a sudden internal mechanical load, respectively. From Fig.
12, we can see the peak values of radial dynamic stresses in the
piezoelectric hollow sphere are larger than those in the elastic one.
The response curves of the piezoelectric and elastic hollow sphere
are different with each other. It is seen easily in Fig. 13 that the

Fig. 8 Response histories of the dynamic hoop stresses ��
* at

R=0, R=0.5, and R=1, where R= „r−a… / „b−a…, �=CLt / „b−a…,
�b„t…=�0, and ��

* =�� /�0

Fig. 9 Response histories of perturbation of magnetic field
vector hu

* at R=0, R=0.5, and R=1, where R= „r−a… / „b−a…, �
=CLt / „b−a…, �b„t…=�0, and hu

* =hu / „Hu�0…

Fig. 10 Response histories of the dynamic electric displace-
ments Dr at R=0, R=0.5, and R=1, where R= „r−a… / „b−a…, �
=CLt / „b−a…, �b„t…=�0, and Dr

*=Dr /�0

Fig. 11 Distributions of the dynamic electric potentials �* at
�=0.1, �=0.5, and �=1, where R= „r−a… / „b−a…, �=CLt / „b−a…,
�b„t…=�0, and �*=� /�0

Fig. 12 Response histories of the dynamic radial stresses �r
*

at R=0.5, where R= „r−a… / „b−a…, �=CLt / „b−a…, pa„t…=p0, and
�r

*=�r /p0
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difference is little between the response of the piezoelectric hol-
low sphere and that of the elastic one at the middle surface.

Example 4. Although the dynamic responses of coupled fields
have been studied by a number of authors, no published experi-
ment results can be used for a comparison with the present model.
To our knowledge, no experimental results on the problem of
dynamic response of the transversely isotropic piezoelectric hol-
low sphere placed in a uniform magnetic field, subjected to me-
chanical load and electric excitation are available in the literature.
This is apparently due to the fact that the experimental research on
the electromagnetoelastic dynamic response of a piezoelectric hol-
low sphere remains a formidable task.

In order to prove further the correctness of analytical results in
the paper, the present method can be applied to solve the dynamic
problem of spherically symmetric motion in piezoelectric hollow
spheres. For ease of comparison with Ref. �8�, the same dynamic
problem of spherically symmetric motion in the piezoelectric hol-
low sphere is considered and the same material parameters are
taken as Ref. �8�. The response of radial stress �r at R=0.5 and
the response of hoop stress �� at R=0 are depicted in Figs. 14,
respectively, which appears in that the results from the two differ-
ent methods are nearly the same.

5 Conclusions

1. Because of the interaction between elastic deformation,
electric field, and magnetic field, a sudden mechanical
load induces the response of perturbation of magnetic
field vector, electric displacement, and electric potential
in a piezoelectric hollow sphere. Likewise, a sudden
electric potential also causes the dynamic stresses re-
sponses and perturbation of magnetic field vector in the
piezoelectric hollow sphere.

2. Comparing Example 1 with Example 2, it is seen that the
response histories and distributions of stresses, perturba-
tion of magnetic field vector, electric displacement, and
electric potential in the transversely isotropic piezoelec-
tric hollow sphere are obviously different for two kinds
of boundary conditions which are, respectively, shown in
Eqs. �52� and �53�. Thus, it is possible to control the
response histories and distribution of stresses in the
transversely isotropic piezoelectric hollow sphere by ap-
plying a suitable mechanical load and electric excitation
to the structure, or to assessment the response histories
and distribution of stress in the transversely isotropic pi-
ezoelectric hollow sphere by measuring the response his-
tories of electric potential in the structures.

3. It is concluded from the above analyses and discussions
that the presented method is valid. So the solving method

may be used as a reference to solve other dynamic
coupled problems in transversely isotropic piezoelectric
hollow spheres in a uniform magnetic field. From the
knowledge of the response histories of dynamic stresses,
perturbation of magnetic field vector, electric displace-
ment and electric potential in transversely isotropic pi-
ezoelectric hollow spheres, one can design various elec-
tromagnetoelastic elements placed in a uniform magnetic
field, subjected to mechanical load and electric excitation
to meet specific engineering requirements.
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Nomenclature
�ij � components of strains

U� ,u � displacement vector and radial displacement
�m�

cij � elastic constants �N/m2�
eij � piezoelectric constants �C/m2�

�11 � dielectric constants �C2/Nm2�
�i ,Dr � components of stresses �N/m2� and radial elec-

tric displacement �C/m2�
��r , t� � electric potential �W/A�

	 � mass density �kg/m3�
t � time variable �s�
r � radial variable �m�

Fig. 13 Response histories of the dynamic hoop stresses ��
*

at R=0.5, where R= „r−a… / „b−a…, �=CLt / „b−a…, pa„t…=p0, and
��

* =�� /p0

Fig. 14 „a… Response histories of dynamic radial stress �r at
R=0.5; „b… response histories of dynamic hoop stress �� at R
=0
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H� � magnetic intensity vector

h� � perturbation of magnetic field vector

J� � electric current density vector
e� � perturbation of electric field vector
� � magnetic permeability �H/m�
fu � Lorentz’s force �kg/m2 s2�

a ,b � internal and external radii of piezoelectric hol-
low sphere �m�

CL � electromagnetoelastic wave speed �m/s�
� � the inherent frequency of the piezoelectric hol-

low sphere �1/s�.

Appendix
Applying Laplace transform to the two sides of Eq. �31�

Laplace�− ki
2 f̄�ki,t�� =

1

CL
2 Laplace� �2 f̄�ki,t�

�t2 +
�2ūq1�ki,t�

�t2 �
�A1�

The left-hand side of Eq. �A1� may become

Laplace�− ki
2 f̄�ki,t�� = − ki

2� f̄*�ki,L�� �A2�

Where L is the parameter of Laplace transform.
The right-hand side of Eq. �A1� may become

Laplace� �2 f̄�ki,t�
�t2 +

�2ūq1�ki,t�
�t2 �

= L2 f̄�ki,t� − Lf̄�ki,0� − f̄��ki,0� + L2ūq1�ki,t� − Lūq1�ki,0�

− ūq1� �ki,0� �A3�
and utilizing the initial condition �23c�, yields

f̄�ki,0� + ūq1�ki,0� = 0, f̄��ki,0� + ūq1� �ki,0� = 0 �A4�
Substituting Eq. �A4� into Eq. �A3�, and utilizing Eq. �A2�, gives

− ki
2� f̄*�ki,L�� =

1

CL
2 �L2 f̄�ki,t� + L2ūq1�ki,t�� �A5�

By means of the natural frequencies �i=CLki, we have

− ��i
2 + L2� f̄*�ki,L� = L2−*

uq1�ki,L� �A6�
Thus, Eq. �33� can be obtained.
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Buckling and Sensitivity to
Imperfection of Conical Shells
Under Dynamic Step-Loading
A general nonlinear dynamic analysis, based on Donnell’s shell-type theory, is developed
for an arbitrary imperfect isotropic conical shell. It is used for studying dynamic stability
and imperfection sensitivity under dynamic step loading. The nonlinear dynamic time
history and the sensitivity behavior are examined in parametric terms over a wide range
of aspect ratios. A general symbolic code (using the MAPLE compiler) was programmed to
create the differential operators. By this means the Newmark discretization, Galerkin
procedure, Newton-Raphson iteration, and finite difference scheme are applied for auto-
matic development of an efficient FORTRAN code for the parametric study, and for exam-
ining the correlation of the sensitivity behavior between two different dynamic stability
criteria. An extensive parametric study of the effect of the cone semi-vertex angle on the
stability and sensitivity to imperfection under dynamic step loading was carried out. It
was found that the dynamic buckling can indeed be derived from the nonlinear static
solution. �DOI: 10.1115/1.2178836�

Introduction
The behavior of shell-like structures under buckling is charac-

terized by a limit point with a snap through phenomenon. Thus
these structures are sensitive to initial imperfection, and insight
into the post-buckling stage is essential in lightweight structural
design.

A conical shell is an appropriate representative of the entire
range of this sensitivity: from the extra-sensitive cylinder to the
completely insensitive annular plate. Hence, the transition from
sensitivity to insensitivity can be followed by varying the cone
semi-vertex angle. Two approaches were applied in investigating
the sensitivity: �I� parametric study of the conical shell in terms of
its initial post-buckling �see �1�� and �II� tracing of the entire
nonlinear equilibrium path with emphasis on the level and direc-
tion of change of the stiffness during loading �see �2��. In both
cases the study was confined to static loading, but most loads on
structural systems include dynamic effects, whose contribution to
the sensitivity behavior is of vital importance.

The object of the present paper is investigation of the buckling
and sensitivity of imperfect conical shells under dynamic step
loading. The term “dynamic stability” encompasses many classes
of problems, such as parametric resonance, pulse buckling, and
nonconservativeness. The study here concerns a sudden large in-
crease in the response with displacement resulting from a small
increase of the load parameter. The main object of the study is
prediction of the critical conditions under which dynamic instabil-
ity may set in. A system is considered stable when its displace-
ments are bounded and the critical load is the lowest at which its
motion becomes unstable.

Dynamic buckling of conical shells has not been extensively
discussed so far in the literature. Rossettos and Parisse �3� studied
the dynamic response of conical panels, Srinivasan and Krishnan
�4,5�—that of layered and stiffened conical shells, and Ganapathi
et al. �6�—the dynamic instability of truncated conical shells un-

der periodic in-plane loading. None of them considered the effect
of initial imperfection on the dynamic response in terms of the
dynamic buckling load. Dynamic buckling of imperfect conical
shells, using a six-degrees-of-freedom model, was investigated by
Shiau et al. �7�, but this model is inappropriate for the general
dynamic stability and sensitivity of such shells. Dumir et al.’s �8�
study was confined to axisymmetric dynamic buckling of shallow
conical shells.

The present paper deals with imperfect conical shells under
sudden axial compression in terms of their sensitivity to the am-
plitude and shape of the imperfection. Furthermore, two dynamic
buckling criteria are compared: full nonlinear dynamicity through-
out �9� and pure nonlinear staticity throughout �10,11�. The pur-
pose of the comparison is to show the advantage of applying static
criteria to dynamic stability.

The nonlinear differential operators of the equations of motion
are derived with the aid of Hamilton’s principle and using Don-
nell’s kinematic relations. The solution procedure is based on dis-
cretization of the unknown functions in time by the Newmark
method, with expansion in Fourier series in the circumferential
direction and finite differences in the axial direction. The Galerkin
procedure is then applied for minimizing the error due to trunca-
tion of the Fourier series. Finally, Newton-Raphson iteration is
applied to obtain the solution. The overall procedure is written as
a special symbolic program using the MAPLE compiler, whose out-
put is the FORTRAN code NDAICS �Nonlinear Dynamic Analysis
of Imperfect Conical Shells�, used for parametric study over a
wide range of aspect ratios. It was found that the static criterion
for dynamic stability under axial step loading is representative.

Dynamic Stability Criteria
In the criteria suggested by Budiansky and Roth �9�, the dy-

namic buckling load is defined as the level at which a large in-
crease occurs in the deflection amplitude when the nonlinear
equations of motion of the system are solved for different load
levels.

The other criterion applied in this paper is that suggested by
Hoff and Bruce �10� and Simitses �11�, whereby the dynamic
critical load is determined by the static post-limit load under
which the modified total potential energy is zero. This criterion
corresponds to the lower bound of the critical conditions for ex-
ternal applied step load �sudden, with infinite duration�, was ap-
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plied for cylindrical shells by Simitses and Sheinman �12�, and is
used here for a conical shell, over the whole range of vertex
half-angle, for examining the imperfection sensitivity behavior.
Due to its importance and for the sake of completeness, it will be
recapitulated here in brief:

On the basis of the conservation of energy principle, the total
energy is a constant, C:

��u,v,w;�� + T�u̇, v̇,ẇ� = C �1�

where � and T are the total potential and kinetic energy function-

als, respectively; �˙� is the time derivative; u, v, and w are the
displacement functions in the meridional, circumferential, and
normal directions, respectively, and � is the load parameter. The
constant, C, is readily reduced to a zero value by properly defining
a modified total potential energy:

�mod�u,v,w;�� + T�u̇, v̇,ẇ� = 0 �2�
The modified total potential excludes the amount which is directly
related to the axial �nonbuckling� mode. Motion is possible only
when the modified total potential is nonpositive:

�mod�u,v,w;�� � 0 �3�
and the dynamic criterion is then defined, in terms of the applied

load �= �̄, through static analysis for which:

�mod�u*,v*,w*;�̄� = 0 �4�

�̄ denoting the upper bound of all loads for which the motion
remains “unbuckled” and the system remains dynamically
stable—see Ref. �13�.

Governing Equations
The equations of motion governing the nonlinear dynamic be-

havior of imperfect conical shells are based on the Kirchhoff-Love
hypotheses and obtained with the aid of Hamilton’s principle:

��
t1

t2

�T − ��dt = 0 �5�

where � is the total potential of the strain and external loads
functional, T is the kinetic energy functional, and �t1 , t2� is the
time interval. Let �x ,� ,z� be the coordinate in the meridional,
circumferential, and normal directions, respectively �see Fig. 1�.

Using Gauss’ theorem, with the rotary inertia neglected, the
following nonlinear equations of motion are obtained:

− �hu,tt + Nxx,x +
Nx�,�

r�x�
+

sin���
r�x�

�Nxx − N��� + qu = 0

− �hv,tt +
N��,�

r�x�
+ Nx�,x + 2

sin���
r�x�

Nx� + qv = 0

− �hw,tt + Mxx,xx +
2Mx�,x�

r�x�
+

M��,��

r2�x�
−

cos���
r�x�

N��

+
sin���
r�x�

�2Mxx,x − M��,x + 2
Mx�,�

r�x�
� +

1

r�x�
�r�x�Nxx�w,x + ŵ,x�

+ Nx��w,� + ŵ,���,x +
1

r�x�
�Nx��w,x + ŵ,x� +

N��

r�x�
�w,� + ŵ,���

,�

+ qw = 0 �6�
with the following boundary conditions:

Nxx = N̄xx or u = ū

Nx� = N̄x� or v = v̄

Mxx,x +
2Mx�,�

r�x�
+

sin���
r�x�

�Mxx − M��� + Nxx�w,x + ŵ,x�

+
Nx�

r�x�
�w,� + ŵ,�� = Q̄ or w = w̄

Mxx = M̄xx or w,x = w̄,x �7�

where u, v, and w are the components of the displacements func-
tions of the shell in the x, �, and z directions, respectively; ŵ is the
initial geometric imperfection shape; � �,x, � �,�, and � �,t denote the
derivatives with respect to the axial and the circumferential coor-
dinate and to time, respectively; r�x�=R1+x sin���, � and � are
the radius, cone semi-vertex angle, and mass density of the shell,
respectively; qu, qv, and qw are the external distributed loading in

the three directions, respectively; and �̄ � are the external applied
forces or displacements at the boundaries.

The internal forces resultants �N	= �Nxx ,N�� ,Nx�	T and �M	
= �Mxx ,M�� ,Mx�	T are defined by the following isotropic consti-
tutive relation:


 �N	
�M	 � = ��A� �0�

�0� �D� 

��	
�		 � �8�

where �A� and �D� are the membrane and flexural stiffness coef-
ficients, respectively. The membrane strains, �, and the change of

Fig. 1 „a… Geometry and sign convention, „b… step axial load,
and „c… imperfection shape as the buckling mode
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curvature, 	, are defined via Donnell’s �14� and Von Karman’s
approximations:

��	 = ��xx

���


x�

�

=�
u,x +

1

2
w,x�w,x + 2ŵ,x�

v,�

r�x�
+

cos���
r�x�

w +
sin���
r�x�

u +
w,�

2r�x�
� w,�

r�x�
+ 2

ŵ,�

r�x�
�

u,�

r�x�
+ v,x −

sin���
r�x�

v +
w,xw,�

r�x�
+

ŵ,�w,x

r�x�
+

ŵ,xw,�

r�x�
�

�		 = �	xx

	��

	x�

� =�
− w,xx

−
w,��

r2�x�
−

sin���
r�x�

w,x

−
w,x�

r�x�
+

sin���
r2�x�

w,�
� �9�

Using the constitutive relations, Eqs. �8�, the equations of mo-
tion and the appropriate boundary conditions �Eqs. �6� and �7��
can be rewritten in terms of the acceleration and the displacement
components as:

�p�z̈,z� = 0, p = 1,2,3 �10�

where z= �u ,v ,w	 and �p consists of linear, quadratic, and cubic
differential operators:

�p = Lp
1�u� + Lp

2�v� + Lp
3�w� + Lp

4�ŵ,u� + Lp
5�ŵ,v� + Lp

6�ŵ,w�

+ Lp
7�u,w� + Lp

8�v,w� + Lp
9�w,w� + Lp

10�ŵ,ŵ,w� + Lp
11�ŵ,w,w�

+ Lp
12�w,w,w� + qp = 0, p = 1,2,3 �11�

where Lp
e�Q�, Lp

e�Q ,S�, and Lp
e�Q ,S ,T� are the linear, quadratic,

and cubic differential operators �see �15��:

Lp
e�Q� = �p

e�Q,tt + �
i=0

4

�
j=0

4−i

Rij
p,e ��i+j�Q

�x�i����j�

Lp
e�Q,S� = �

i=0

3

�
j=0

3−i

�
k=0

3

�
�=0

�−k

Rijk�
p,e ��i+j�Q

�x�i����j�
��k+��S

�x�k������

Lp
e�Q,S,T� = �

i=0

2

�
j=0

2−i

�
k=0

2

�
�=0

2−k

�
m=0

2

�
n=0

2−m

Rijk�mn
p,e

�
��i+j�Q

�x�i����j�
��k+��S

�x�k������
��m+n�T

�x�m����n� �12�

Here Rij
p,e, Rijk�

p,e , and Rijk�mn
p,e are coefficients of the elastic param-

eters �Aij and Dij� and the radius r�x�. �p
e is the Kronecker delta.

This form of differential operators is especially suitable for sym-
bolic programming.

Note that the equations of motion, Eq. �10�, which are derived
by the consistent variational principle, yield nonlinear terms of
imperfection �see the differential operator Lp

10�ŵ , ŵ ,w� in Eq.
�11��.

Solution Procedure
Given the solution at time step j �tj�, and using the Newmark

method �16� for the time integration, we obtain the partial differ-
ential equations for the next time step j+1:

�̄p�z j+1, z̈ j, ż j,z j� = 0, p = 1,2,3 �13�

This set is first reduced to one of ordinary differential equations
by separating the variables and expansion in a truncated Fourier
series as:

�uj+1�x,��,v j+1�x,��,wj+1�x,��	 = �
m=0

2N

�uj+1
m �x�,v j+1

m �x�,wj+1
m �x�	gm���

�14�

where N=Nu or Nv or Nw �according to the variable� is the number
of terms in the relevant series. The initial geometric imperfection
and the external load �qu ,qv ,qw	 can also be expanded in the same
way:

ŵ�x,�� = �
m=0

2Nw

ŵm�x�gm��� �15�

�qu�x,��,qv�x,��,qw�x,��	 = �
m=0

2Nq

�qu
m�x�,qv

m�x�,qw
m�x�	gm���

�16�

The functions gm��� are:

gm��� = 
cos�nm�� m = 0,1, . . . ,N

sin�n�m − N��� m = N + 1, . . . ,2N
� �17�

n denoting the characteristic circumferential wave number deter-
mined by that corresponding to the lowest total potential energy at
a given load level.

The set of the equations of motion consists of three nonlinear
differential equations, the first two being of second order and the
third of fourth order. These were converted into four equations of
second order in a new unknown function:


 j+1 =
�2wj+1

�x2 �18�

Minimizing the errors due to the truncated Fourier series by
applying the Galerkin procedure with cos�� and sin�� as weighting
functions, we obtain the following nonlinear ordinary differential
equations:

�r
q�Z j+1,Z̈ j,Ż j,Z j;x� =�

0

2�

�̄r�z j+1, z̈ j, ż j,z j�gq���d� ,

Fig. 2 Convergence curve; normalized total energy versus
time step �t
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q = 0,1, . . . ,2N, r = 1,2, . . . ,4 �19�

where �r
q contains 2Nu+2Nv+4Nw+4 nonlinear ordinary differ-

ential equations, and Z j+1 is the unknown vector function, defined
by:

Z j+1 = �uj+1
0 , . . . ,uj+1

2Nu,v j+1
0 , . . . ,v j+1

2Nv,wj+1
0 , . . . ,wj+1

2Nw,
 j+1
0 , . . . ,
 j+1

2Nw	T

�20�
Finally, using the finite-differences scheme, Eqs. �19� yields:

G�u,�� = 0 �21�

where G consists of nonlinear algebraic operators, u is the value
of the unknown functions �Z j+1� at each point of the finite-
difference scheme, and � is the load-level parameter. The nonlin-
ear solution of Eq. �21� is obtained by using the Newton-Raphson

iteration, with the Riks �17� method resorted to for the post-limit-
point solution.

Results and Discussion
The developed NDAICS code �Nonlinear Dynamic Analysis of

Imperfect Conical Shells� covered the nonlinear static and dy-
namic analysis of any isotropic conical shell under arbitrary load-
ing. An isotropic conical shell under step axial compression was
considered with the following data: modulus of elasticity E
=7.24�1010 N/m2, Poisson’s ratio �=0.3, mass density �
=2700 kg-mass/m3, radius at x=0 is R1=1.27 m, length L
=2.54 m, and thickness h=0.0127 m; boundary conditions:

simply-supported, SS3 �Nxx=−N̄xx ,v=w=Mxx=0� at x=0 and
SS4 �u=v=w=Mxx=0� at x=L. The imperfection shape was taken
as the buckling mode shape and plotted in Fig. 1. The bifurcation
point, considering the effect of prebuckling nonlinearity �see Ref.

�18��, was found as N̄xx,bif=0.3603�107 N/m.
First, the criterion for the solution convergence with respect to

the time step was examined and it was found that the one of the
vanishing total energy �E=T+�=0, the shell at rest at t=0� is the
most representative. An example of this convergence is given in
Fig. 2 for a conical shell with cone semi-vertex angle �=30 deg
and imperfection amplitude 
= ŵ /h=0.3. It is obtained with a
very small time interval due to the high frequency of the charac-
teristic behavior as shown in Fig. 3.

Fig. 3 Variation of average axial displacement at x=0 with
time

Fig. 4 Dynamic displacement pattern of conical shell with �

=30 deg under N̄xx=0.48N̄xx,bif; „a… at time 0.025 s; „b… at time
0.075 s

Fig. 5 Variation of maximum average axial displacement with
applied load

Fig. 6 Effect of in-plane inertia on time history
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The above figure �Fig. 3� shows the time history of the average

axial displacement at x=0 under an axial load of 0.47N̄xx,bif and

0.48N̄xx,bif. It is seen that up to the load level N̄xx=0.47N̄xx,bif the
oscillation is about the nonlinear static pre-buckling state, while

for higher levels, N̄xx�0.48N̄xx,bif, the shell snaps through to a
new stable point in the post-buckling regime and oscillates with a
large amplitude about the new state but is still bounded. It seems

that the dynamic buckling load falls between N̄xx=0.47N̄xx,bif and

N̄xx=0.48N̄xx,bif. The deformation shape for N̄xx=0.48N̄xx,bif is pre-
sented in Fig. 4 at time t=0.025 s �oscillation about the nonlinear
pre-buckling state� and t=0.075 s �oscillation about the nonlinear
post-buckling state�. The near-axisymmetric mode in the solution
dominates during the pre-buckling �unbuckled motion� �Fig. 4�a��,
while at the buckling level �Fig. 4�b��, the sharp asymmetric mode
becomes dominant. Figure 5 illustrates the Budiansky-Roth crite-
rion, with the maximum average axial displacement �at x=0� plot-

ted versus the applied load, and the sharp jump at N̄xx

=0.476N̄xx,bif clearly seen. The effect of the in-plane inertia on the
dynamic behavior of the shell is shown in Fig. 6 �the dashed line

Fig. 7 Axial load versus average axial displacement

Fig. 8 Axial load versus average axial displacement for differ-
ent semi-vertex angles

Fig. 9 Imperfection sensitivity of conical shell under static
and dynamic step load

Fig. 10 Effect of the imperfection shape on static and dynamic
buckling load

Fig. 11 Effect of aspect ratio L /R1 on the „a… bifurcation point
and „b… static and dynamic buckling load
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refers to neglected in-plane inertia and the solid line to its reten-
tion�. The dynamic buckling load in the case of neglected in-plane
inertia is the higher of the two, as expected. Hence, formulations
that neglect the in-plane inertia, like the WF �where F is the Airy
stress function and W is the radial displacement, see Ref. �19��
may lead to inaccurate results.

Figure 7 illustrates the Hoff-Simitses criterion whereby the

modified total potential energy is zero at N̄xx=0.459N̄xx,bif, which

is slightly lower than the Budiansky-Roth result �N̄xx

=0.476N̄xx,bif�. The entire nonlinear static pattern in this figure
was obtained with the aid of the code of Jabareen and Sheinman
�2�, with the solid lines representing the equilibrium path with
�mod�0 �bounded motion� and the dashed lines that with �mod
�0 �unbounded� see Eqs. �3� and �4�. The same criterion is shown
for other configurations �=0 deg, �=45 deg, and �=75 deg in
Fig. 8.

The dynamic sensitivity to imperfection according to the differ-
ent criteria is summarized in Fig. 9. It is seen that the results are
quite close �up to 5% difference�. The curves of the static buckling
load �limit-point� and the minimum point �representing the pos-
sible lowest load level at the equilibrium path� are also plotted in
this figure and serve as the upper and lower bounds for the dy-
namic buckling load.

The effect of the imperfection shape is given in Fig. 10. The
solid line refers to the results for the symmetric imperfection
shape taken from Simitses �20�, ŵ=
h sin��x /L�cos�n��, and the
dashed line to those for the shape from the buckling mode. The
imperfection of the mode shape caused a larger reduction in the
static buckling �limit-point� and dynamic buckling.

Figure 11 shows the effect of the length-to-radius ratio �L /R1�.
The bifurcation point is plotted in Fig. 11�a�, and the normalized
static and dynamic buckling load with respect to the bifurcation

level are given in Fig. 11�b�. It is shown that the longer the shell,
the lower the sensitivity to imperfection for both the static and
dynamic cases.

In view of the pronounced effect of the in-plane boundary con-
ditions, the static and dynamic buckling loads were studied and
summarized in Fig. 12 for the simply-supported boundary condi-

tions: SS1 �Nxx=−N̄xx ,Nx�=w=Mxx=0� or SS3 �Nxx=−N̄xx ,v=w
=Mxx=0� at x=0, and SS4 �u=v=w=Mxx=0� at x=L=2.54 m,
and the imperfection taken as the buckling mode. The solid lines
represent the case of SS1-SS4 boundary conditions, and the
dashed lines that of SS3-SS4. The normalized static �limit-point�
and dynamic buckling loads are given in Fig. 12�a�, and the
sensitivity—defined by the ratio of the dynamic and static buck-
ling loads—is plotted in Fig. 12�b�. It is shown that SS3-SS4
yields a higher static and dynamic buckling level, with rather
more sensitivity to imperfection.

The nonlinear behavior of the SS1-SS4 case is completely dif-
ferent from that of SS3-SS4 in terms of its post-buckling harden-
ing �see Fig. 13�a��. In the SS1-SS4 case, from the dynamic buck-
ling level on, the total modified potential energy is positive
��mod�0�, while for SS3-SS4 it has some regions of �mod�0
even after the dynamic buckling level �switching from the dashed
to the solid line and back, as shown in Fig. 13�a��. In other words,
SS3-SS4 is characterized by some hardening regions, while SS1-
SS4 has no hardening at all. That of course affects the real time
history behavior in which beyond the dynamic buckling level
SS3-SS4 oscillates around a new equilibrium state �see the curve

of N̄xx=0.48N̄xx,bif in Fig. 13�b��, while SS1-SS4 shows no oscil-
lations at all after the buckling, and the motion grows unbounded.

The effect of the semi-vertex angle on the static and dynamic
buckling loads is plotted in Fig. 14. The pattern curves reflect the

Fig. 12 Effect of in-plane boundary conditions on static and
dynamic buckling load

Fig. 13 Effect of in-plane boundary conditions on the „a… non-
linear static behavior and „b… dynamic behavior
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change of the circumferential characteristic wave number, which
decreases as the angle increases. It is also seen that as the angle
increases the two loads �the static and dynamic buckling curves�
draw closer together and for an annular plate they coincide—in
other words, as the angle increases the sensitivity to imperfection
decreases. Finally, the dynamic sensitivity to imperfection is plot-
ted in Fig. 15 for different values of the semi-vertex angle. It is
seen that as the angle increases, the ratio of dynamic to static
buckling load increases—meaning less dynamic sensitivity to im-
perfection.

Concluding Remarks
A symbolic procedure for creating a numerical code is pre-

sented for the nonlinear dynamic behavior of conical shells. It is
used here to compare different dynamic stability criteria and to
examine the effect of the imperfection on the nonlinear dynamic
stability and sensitivity behavior for different aspect ratios. The
following conclusions can be drawn from the results:

• The dynamic buckling load obtained by the Hoff-Simitses
criterion �via only static analysis� is acceptable and slightly
lower than that obtained by the Budiansky-Roth criterion
�via complete dynamic analysis�.

• The Hoff-Simitses criterion is quite efficient, thus obviating
any need for dynamic analysis.

• The static and dynamic sensitivity behavior is imperfection-
amplitude dependent: the larger the amplitude, the higher
the sensitivity.

• The imperfection shape as the buckling mode leads to rig-
orous sensitivity to imperfection compared to other shapes.

• The larger the length-to-radius ratio, the smaller the sensi-
tivity to imperfection.

• The cone semi-vertex angle plays an important role in the
sensitivity to imperfection, in both the static and the dy-
namic cases: the larger the angle, the lower the sensitivity.
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The Response of Metallic
Sandwich Panels to Water Blast
Metallic sandwich panels subject to underwater blast respond in a manner dependent on
the relative time scales for core crushing and water cavitation. This article examines the
response at impulses representative of an (especially relevant) domain: wherein the water
cavitates before the core crushes. Three core topologies (square honeycomb, I-core, and
corrugated) have been used to address fundamental issues affecting panel design. Their
ranking is based on three performance metrics: the back-face deflection, the tearing
susceptibility of the faces, and the loads transmitted to the supports. The results are
interpreted by comparing with analytic solutions based on a three-stage response model.
In stage I, the wet face acquires its maximum velocity with some water attached. In stage
II, the core crushes and all of the constituents (wet and dry face and core) converge onto
a common velocity. In stage III, the panel deflects and deforms, dissipating its kinetic
energy by plastic bending, stretching, shearing, and indentation. The results provide
insight about three aspects of the response. (i) Two inherently different regimes have been
elucidated, designated strong (STC) and soft (SOC), differentiated by a stage II/III time
scale parameter. The best overall performance has been found for soft-core designs. (ii)
The foregoing analytic models are found to underestimate the kinetic energy and, conse-
quently, exaggerate the performance benefits. The discrepancy has been resolved by a
more complete model for the fluid/structure interaction. (iii) The kinetic energy acquired
at the end of the second stage accounts fully for the plastic dissipation occurring in the
third stage, indicating that the additional momentum acquired after the end of the second
stage does not affect panel performance. �DOI: 10.1115/1.2178837�

1 Introduction
The response of metallic sandwich panels to the impulse caused

by underwater blast has been the subject of several recent assess-
ments �1–7�. The scenario of interest is depicted in Fig. 1. An
impulse from the water impinges on a panel rigidly supported
around its perimeter. The blast wave causes the core to compress
and the panel to deflect. It is desirable to design panels that �for
equivalent weight per area� beneficially affect the following three
performance metrics, in order of importance:

A. The incidence and extent of dynamic tearing of the front
�or wet� face.

B. The center deflection of the back �or dry� face.
C. The load imparted to the supports.

The benchmark is a solid plate of the same material with identical
weight per area. The intent is to probe the influence of topology
on all three performance metrics and thereby provide insights into
the design of optimal panels. In the present paper, numerical simu-
lation is used to ascertain responses that can be expressed in a
form amenable to comparison with available analytic solutions.

Results for a plane impulse provide the fundamental perspective
�2–7�.

The analysis originates with a temporally distinct three-stage
model for air blast �Fig. 1� �2–5�. In stage I, the impulse imparts a
momentum to the front face which dictates its kinetic energy. In
stage II, the front face decelerates as the core and back face ac-
celerate, until a common velocity is attained. At the end of this
stage, the momentum and kinetic energy are the same as those
experienced by a solid plate having the same mass per area. Fi-
nally, in stage III, the kinetic energy is dissipated by plastic bend-
ing, stretching, and indentation of the panel.

While the response to water blast may not be temporally sepa-
rable in such explicit manner �and for certain panels may be in-
separable even for air blast�, the three stages remain a useful
concept. The extension to water blast has been pursued through
the incorporation of the fluid/structure interaction �FSI� �4�. This
assessment has identified four different domains differentiated by
their cavitation and core crushing characteristics. To set the objec-
tives of the present study, the key features of this FSI analysis are
described in the following section.

2 Background Analysis

2.1 Initial Response. Consider a panel with total mass per
unit area,

mtotal = mf + mb + mc �1�

with mf the mass per unit area of the front face, mb that for the
back face, and mc the mass per unit area of the core. The imping-
ing wave has the form �3–5�:
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pI = p0e�,

� =
x

cwt0
−

t

t0
,

with t0 the characteristic decay time for the pulse and t the time
after the blast first arrives at the fluid/structure interface �at x=0�.
Thereafter, the pressure in the water is �for �=x /cwt0+ t / t0�0�
�4,5�:

p�x,t� = p0�e� − � 2�

1 − �
+

�YD
c

p0
�e−�� +

1 + �

1 − �
e−� +

�YD
c

p0
� ,

�2a�

and �for ��0�

p�x,t� = p0e� �2b�

with the fluid/structure interaction parameter, �=�wcwt0 /mf. The
corresponding velocity distribution is �for ��0�:

v�x,t� =
p0

�wcw
�e� + � 2�

1 − �
+

�YD
c

p0
�e−�� −

1 + �

1 − �
e−� −

�YD
c

p0
�

�3a�

and �for ��0�

v�x,t� =
p0

�wcw
e�. �3b�

The water begins to cavitate at location x=xc after time t= tc,
when the pressure in the water first satisfies:

p�xc,tc� = 0 �4a�

and

�p�xc,tc�
�x

= 0. �4b�

This event coincides with the end of stage I. The fluid pressure and

velocity profiles at the end of this stage are thus obtained from
Eqs. �2a� and �3a� as:

p��x� = p�x,tc�
�5�

v��x� = v�x,tc�

This occurs at time:

tc 	 t0�ln ��/�� − 1� .

The pressure and velocity characteristics at this time for �
=3.125 and �YD

c / p0=0.18 are shown in Fig. 2�a�, together with
finite element calculations elaborated later. Subsequently, a cavi-
tation front moves through the water, away from the panel, exem-
plified by the pressure and velocity distributions at t=2tc plotted
in Fig. 2�b�.

At this stage, the momentum of the front face and attached
water layer �added mass� �xc�x�0� is:

MF = mfvface +

xc

0

�wv��x�dx , �6�

while that acquired by the core plus back face is �5�:

MB = �YD
c tc. �7�

In the preceding formulas, �YD
c is the “dynamic strength” of the

core and is assumed constant in time. It is the stress induced in the
core, immediately adjacent to the front face, at the onset of cavi-
tation. For a material with linear hardening, tangent modulus, ET
�typical for stainless steels�, the following approximate form has
been proposed �8�:

�YD
c

�Y�̄
� �D 	 1 +�ET

E
� vface

cel	Y
− 1� . �8�

Here cel=�E /� is the relevant elastic wave speed in the constitu-
ent material, �Y is its yield strength, and 	Y is its yield strain �at
the relevant strain-rate�. To determine �YD

c from �8�, the front face
velocity, vface, must be determined from �3a� at x=0, t= tc, leading
to an implicit expression. As an alternative, the velocity can be
estimated from �3a� with the core yield strength set to zero; the
result is almost the same. It will be shown below that �8� provides
a reasonably accurate measure of �YD

c for each of the cores exam-
ined in this investigation.

The pressure pulses caused by underwater explosions are more
complex. The growth and collapse of bubbles caused by the ex-
pansion and compression of the explosion gases, as well as the
interaction of the buoyant bubble and its acoustic signals with the
sea bottom, the water surface, and the structure �9–12�, lead to
pressure waves having complicated forms. Nevertheless, the ini-
tial pressure rise and its decay at locations below the surface are
well characterized by the preceding forms. Most of the differences
between the present model and the reality of an underwater ex-
plosion occur after the initial pressure rise has decayed to moder-
ate levels �9–12�. The secondary pressure spikes that arrive later
do not cause significant damage to a well-designed structure that
has survived the initial impulse, as described later. So we focus on
the initial pressure wave and its effect on the structures of interest.
It is also true that the simple exponential decay after the sharp
spike of pressure is an idealization, with some oscillation of the
pressure occurring superposed on the exponential form �9�. How-
ever, these pressure oscillations are minor and do not significantly
alter the effect of the impulse on the deforming structure.

2.2 Impulsive Domains. The response of the panel in stage II
depends on the magnitudes of the impulse, the FSI parameter, �,
and the mass �4�. Key aspects have been elucidated by envisaging
homogenized cores at appropriate relative densities �4�. Four do-
mains emerge, illustrated using two additional parameters: a non-
dimensional impulse �4�,

Fig. 1 A schematic showing the three temporally distinct
stages that accompany a panel subject to air blast †3‡
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Ī =
2Ioto

mfHc
�9a�

and a nondimensional mass,

m̄ =
mc

mf
, �9b�

where Hc is the core height. The domains are illustrated on Fig. 3
�4� for levels of impulse and panel dimensions representative of

those to be explored in the present study �Ī	0.5, m̄	1�. They
comprise a high strength domain �IV� in which the core is com-
pletely resistant to crushing and a low strength, small �, domain
�I� in which the core completely crushes before the water cavi-
tates. Two intermediate domains �II and III�, in which the cores
partially crush, are especially relevant. In domain II, cavitation
occurs in the water �at location xc�0� before core crushing is
complete. Domain III also involves partial crushing, but differs in
the sense that cavitation occurs at the front face �xc=0�, not in the
water. It arises when the cores are stronger. Contours of transmit-
ted impulse �Fig. 3� indicate how the domains affect the response.
Because of its importance to ongoing investigations of blast resis-
tant panels �1–7�, the present study has been designed to probe
domain II for representative core topologies. That is, all of the
impulse levels and core topologies result in domain II responses.
Subsequent investigations will examine other domains as well as
transitions between domains.

2.3 Analytic Formulas for Domain II. Analysis conducted
for impulses and cores representative of domain II �5� have pro-
vided formulas that benchmark the ensuing numerical results. For-

mulas are available for a design with front and back faces having
the same mass �5� expressing the transmitted impulse, IT, as well
as the momentum acquired by the front face, MF, both inclusive
of the mass of attached water between the initial cavitation plane
and the structure, and the momentum induced in the core plus
back face, MB. This attached water mass is �5�:

mw = 0.71mf�
�YD

c

p0
. �10�

such that

IT

I0
� FT = 2f + 1.27�1 − f�

�YD
c

p0
�11a�

MB

I0
� FB = 3.64f

�YD
c

p0
�11b�

MF � I0FF = IT − MB �11c�

with f =��/�1−��.
The kinetic energies acquired by the panel can be determined

from these momenta. Inclusive of the mass of the attached water,
the KE at the end of stage I, before the core begins to crush, is �5�;

KEI =
MF

2

2�mf + mw�
+

MB
2

2�mb + mc�
�12a�

and, after stage II, when core crushing is complete �5�:

Fig. 2 The trends in pressure and velocity in the water at times tc and 2tc „with tc designating the instant when cavitation
commences…. The plots compare the analytic solution with a calculation conducted using ABAQUS/Explicit. After tc, cavitation
fronts propagate through the water „towards and away from the panel… leaving a zone of cavitated water in their wakes. Note
that, at the cavitation front, the water has positive velocity in the direction of motion of the panel. The equivalent thickness of
the sandwich panel is 20 mm. The core has a relative density of 0.03 and yield strength of �YD

c /p0=0.18. The thickness of the
front face is 6 mm so that �=3.125 and that of the back face is 8 mm.
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KEII =
IT

2

2�mf + mb + mc + mw�
. �12b�

In some of the following numerical assessments, the kinetic ener-
gies in the structure only �that is, excluding the attached water� are
also determined: these are designated KEI

* and KEII
* .

The times associated with these stages are �5�:

tI = tc 	 t0�ln ��/�� − 1� ,

tII 	
IT

2�YD
c , �13�

tIII 	 L��/�Y .

At the end of stage II, when temporally distinct from stage III, all
constituents attain a common velocity,

vcommon =� 2KEII

mtotal + mw
. �14�

During stage II, the crushing strain 	c of the core is dictated by its
ability to absorb the kinetic energy differential, KEI−KEII,
through plastic dissipation in the core:

Wc 	 �YD
c 	cHc. �15�

Equating Wc to KEI−KEII leads to an expression for the crushing
strain �5�.

The back face deflection is dictated by the ability of the sand-
wich to absorb KEII, during stage III. The dissipation involves
plastic bending, stretching, shearing, and indentation, subject to
the prior core crushing in stage II. When bending and stretching
predominate �no shear resistance in the core and no indentation�,
the dissipation for a panel with both faces having equal thickness
rigidly supported at the ends is given by �5�:

Wpl
total =

2

3
�Yhf�2 + �smc/mf��
b

L
�2

+ 4�Yhf

Hc�1 − 	c�
L


b

L

�16�

where �s=�s /�Y�̄ is a measure of the stretch resistance of the
core, with �s the stretch strength. The results for other support
conditions will be discussed elsewhere �13�.

2.4 Strong and Soft Cores. The possibility that two regimes
exist has already been postulated �4�. These regimes emerge viv-
idly in the present study. Their relative incidence is anticipated by
the relative time scales for stages II and III expressed by the ratio
�14�:

� �
tII

tIII
	

2IT

L�YD
c ��Y

�
. �17�

The differing responses are differentiated by a critical value, �th.
When ���th, stages II and III are temporally distinct, enabling
the panels to attain a common velocity at the end of stage II,
whereupon the response can be analyzed with modifications to the
preceding analytical formulas. Panels that respond in this manner
are designated strong core designs �STC�, because high core
strength contributes to the sign of the � inequality. Note that the
distance between the supports also affects the transition, so that
the STC designation should not be construed to be solely gov-
erned by the dynamic strength of the core.

When ���th, stages II and III merge, causing a change in
regime. The alternative response is conceptually closer to the
buffer plate/crushable core concept �15�, with no common veloc-
ity. Panels having this response are designated soft core designs
�SOC�, with the caviat that, again, the support length is also in-
volved. It will be demonstrated that, for all three performance-
governing metrics �A, B and C, above�, SOC designs are prefer-
able. Estimates of �th will be provided.

3 Scope of the Calculations
Three different core topologies have been selected, based on

their geometric versatility and the range in their dynamic strength
�Fig. 4�. When the core height Hc is significant relative to the span
of the panel, it can be considered to represent a double hull system
in naval architecture. However, we do not consider our concepts
to be restricted to either single or double hull systems, but appli-
cable as appropriate to both possibilities.

i. A high strength orthotropic core based on the square hon-
eycomb �Fig. 4�a��. In the double hull setting, this archi-
tecture is known as orthogonally stiffened.

ii. An I-core with axial characteristics comparable to the hon-
eycomb, but entirely different transverse properties, ren-
dering it amenable to a comprehensive parameter study
�Fig. 4�b��. In the double hull case, this design is known as
unidirectionally-stiffened.

iii. A corrugated core amenable to a wide sensitivity assess-
ment, upon varying the included angle and the relative
density �Fig. 4�c��. This design is reminiscent of the
Navtruss. However, our architecture differs both in detail
and in parametric range.

All calculations are performed without initial imperfections. The
role of imperfections, which can be substantial, will be examined
in a separate study �13�.

Fig. 3 Fluid structure interaction map „Ī=0.5, m̄=1.0… with axes
of core dynamic strength and the Taylor fluid structure interac-
tion parameter �. The four impulse domains are marked on the
map. Contours of the impulse transmitted into the sandwich
plate at first cavitation are also included †4‡.

Fig. 4 The geometries of the three core topologies used in the
analysis
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Two different boundary conditions have been pursued.
Condition I. The two faces and the core are rigidly held at the

supports. This condition has been used in most prior investiga-
tions �1–3,5–7�.

Condition II. Only the back face is fixed at two outer supports.
Periodic boundary conditions are imposed on the front face, but,
otherwise, this face is free to displace into the core and toward the
supports.

Note that the applicability of the analytic results �above� is
unaffected by the choice of boundary condition through stage II.
Differences arise in stage III.

A preliminary numerical assessment, used to refine the scope of
the investigation, has revealed the following two characteristics.

a. The back face displacements attained for condition I are
less than those for condition II. The difference is associ-
ated with the diminished front face stretching occurring
for the latter.

b. The plastic strains in the front face are lower for condi-
tion II.

Given the apparently greater importance of tearing than deflec-
tion, condition II has been chosen for most of the ensuing analy-
sis.

All calculations are performed using a representative free field
impulse with pressure/time characteristics �p0=100 MPa, t0
=0.1 ms� indicative of domain II. The consequences of larger im-
pulses and the occurrence of different domains �Fig. 3� will be
elaborated in future assessments. The calculations are carried out
for panels consisting of 304 stainless steel having the approxi-
mately bilinear stress-strain curves depicted on Fig. 5, with appre-
ciable strain-rate sensitivity. All properties and constitutive law
details are as summarized in �8�. In addition to calculations for
edge-supported beams, some simulations have been carried out
for freestanding panels in the form depicted in the side view of
Fig. 6 �i.e., without kinematic constraint parallel to the direction
of the impulse�. These simulations provide results of the type
shown as “numerical” on Fig. 2.

The ensuing sections of this article are organized in the follow-
ing manner. In Sec. 4, the core topologies to be used are geometri-
cally specified. In Sec. 5, the numerical scheme is described and
some calibration results presented. Thereafter, in Sec. 6, mecha-
nism identification is used to provide criteria that distinguish STC
and SOC responses, emphasizing the different performance met-
rics in the two domains. In Sec. 7, an alternative analytical model
is used to provide a consistent reinterpretation. In Sec. 8, the
deflections and the plastic strains in the faces are examined and
related to analytic results.

4 Geometries
All panels have fixed mass per unit area, mtotal=160 kg/m2,

corresponding to a solid plate thickness, Heq=2 cm. The half span
is taken to be representative, L=1 m, width l=0.1 m, with the
constraint that the core thickness, Hc /L�0.4. The three core to-
pologies �Fig. 4� allow a wide range of geometric options for fixed
mtotal.

For the square honeycomb, the benchmark is a core with rela-
tive density, �̄=0.03, and faces with equal mass, subject to a fixed
spacing between core members, l=0.1 m. Around this benchmark
design, the core relative density is allowed to vary between 0.01
��̄�0.04 while the spacing, l, is fixed. This is achieved by
adding/subtracting mass to the faces in order to retain mtotal. The
ratio of the back to front face thickness, 
=hb /hf, is also varied
between 1 and 6 for each �̄. The latter is used to highlight the
influence of the faces on the fluid/structure interaction.

The I-core density was varied between 0.01��̄�0.06, with
particular emphasis on relative core height in the range, 0.1
�Hc /L�0.3. The face thickness ratio 
 was varied between 1
and 7, again achieved by redistributing the mass between the faces
and the core to maintain mtotal. Two specific geometries provide
the clearest distinction between strong and soft responses. The
STC response is illustrated by a system having dimensions hf

Fig. 7 The predictions of the transmitted impulse conducted
for a solid plate using ABAQUS/Explicit and the comparison
with the analytic solution given by Taylor †17‡

Fig. 5 Dynamic stress/strain curves for 304 stainless steel
used in the simulations †8‡ Fig. 6 A schematic of the numerical model used in

ABAQUS/Explicit
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=2 mm, hb=6 mm, Hc=20 cm, and �̄=0.06. The SOC response is
demonstrated using dimensions: hf =4 mm, hb=12 mm, Hc
=30 cm, and �̄=0.013.

For the corrugated core, the relative densities were in the range
0.01��̄�0.05. The height of the core was varied within 0.05
�Hc /L�0.4 by changing the angle, �. The face thickness ratio 

was allowed to vary subject to the constraint, hf �2 mm. Again,

two geometries are used to distinguish the responses. The SOC
response is demonstrated using the dimensions, �̄=0.02, 
=5.5,
and Hc /L=0.3. The STC response is found using dimensions �̄
=0.05, 
=4, and Hc /L=0.2.

Given that the I-cores and the corrugations are anisotropic,
choices must be made regarding the orientation. The present as-
sessment is conducted in the “stronger” orientation. That is, for

Fig. 8 The deformations predicted using the numerical model for the three cores shown in
Fig. 4. Results for the I-cores and the corrugated cores are shown for both strong and soft
responses.
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the I-and corrugated cores, the members are axial and continuous
between the supports �Fig. 4�. This orientation is orthogonal to
that analyzed by Rabczuk et al. �7�, who studied panels having the
core members aligned transversely. With all other parameters held
fixed, the differing orientations generate very different trends, as
discussed later. The rationale for the present choice has been mo-
tivated by 3-D simulations �Appendix A�, which suggest that the
dynamic responses of square panels are largely governed by the
behavior along the “strong” direction. Future assessments will
elaborate and clarify the role of anisotropy.

5 The Numerical Scheme and Calibration Tests
The numerical model �Fig. 6� consists of a water column above

the sandwich panel. Contact is enforced at the interface between
the water and the panel. Symmetry boundary conditions are ap-
plied at all surfaces, except at the back face support �at x=0�,
which is clamped. A uniform pressure boundary condition is im-
posed on the top surface of the water column. Numerical tests
have ascertained that, to correctly capture the fluid/structure inter-
actions, the height of the column must satisfy: Hw�4Hc.

The commercial code, ABAQUS/Explicit �16�, is used. Eight-
node 3D brick elements with reduced integration �C3D8R� are
employed to model the water, while four-node shell elements
�S4R�, with five integration points through the thickness, are used
to model the faceplates and the core members. The water is as-
sumed to be linear elastic under compression, with zero tensile
strength and zero shear modulus. �Some simulations have been
performed with a small finite shear modulus, G /cw

2 �w=10−6, to
affirm that the results are negligibly different from those with zero
shear modulus�. Thus, the pressure �p� in the water is given by:

p = − cw
2 �w	V, �	V � 0�

�18�
p = 0, �	V � 0�

where 	V=
0
t ��vi /�xi�dt is the fluid volume strain. Thus when

	V�0, all stresses in the water become zero, causing cavitation.
Careful consideration has been given to the artificial bulk vis-

cosity coefficients. The default coefficients designated in
ABAQUS/Explicit give excessive dissipation in the water that di-
minishes the pressure before the impulse reaches the structure.
Consequently, the coefficients have been systematically reduced
until the blast wave pressure closely matches p0 when it confronts
the panel. The values utilized are b1=0.02 and b2=0.2 �16�. To
affirm the fidelity of the approach, numerical results for a free-
standing metal plate have been obtained and compared with the
analytic solution given by Taylor �17� �Fig. 7�.

For each simulation, the following parameters are obtained:

i. The final mid-point deflections of the faces: front, 
 f, and
back, 
b.

ii. The core crushing strain, 	c.
iii. The velocities of the faces �front, v f and back, vb� as a

function of time, t, after the impulse contacts the front
face.

iv. The kinetic energies of the two faces �KEfront and KEback�
and the core �KEcore� and the total �KEtotal�, as a function
of time.

v. The plastic dissipation, Wpl
constituent, in each constituent as a

function of time.
vi. The reaction forces, Preact, at the supports as a function of

time.

Fig. 9 The constituent velocities and kinetic energies obtained for corrugated cores: „a… and „b… refer to a strong core with
relative density, �̄=0.05, �=4, and �=9.375 while „c… and „d… refer to a soft core with �̄=0.02, �=5.5, and �=8.70.
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vii. The largest plastic strain, 	pl
max, in the two faces.

The reaction force, Preact, is taken as the summation of all nodal
forces on the clamped edge of the back face.

At any instant, the average speed, vi, of element i is obtained
through finite element interpolation, once the velocities of its
nodes have been ascertained. Then its kinetic energy is obtained
�KEi= �1/2�mivi

2, with mi the mass of the element� and the total
kinetic energy of the constituent determined from the summation:

KEconstituent = �
i=1,nE

KEi, �19a�

where nE is the number of elements in the constituent. The total
kinetic energy in the structure is ascertained as:

KE* = KEfront + KEback + KEcore �19b�

The kinetic energy in the attached water at the end of stage II is
also evaluated for STC designs. For this purpose, the average
velocity of the panel, vcommon, at the end of stage II is first ob-
tained. Then, by monitoring the fluid velocity at various locations
near the wet surface, the thickness, �xa�, of the attached layer ad-
jacent to the panel �namely the thickness of the fluid having the
same velocity� is determined. The kinetic energy of the attached
layer is then KEwater= lL�w�xa�vcommon

2 /2.
The plastic dissipation in each element is calculated using:

Wpl
i = 
V


0

	p

�Yd	p, �20�

with 	p the effective plastic strain and 
V the volume of the
element. Thereafter, the total plastic dissipation in each constitu-
ent is given by the summation,

Wpl
constituent = �

i=1,nE

Wpl
i . �21�

In ABAQUS, such summations are performed automatically.
Since the bending deflections of the panel are negligible in

stages I and II, the velocities can be ascertained from the associ-
ated kinetic energies: v f =�2KEfront /mf and vb=�2KEback/mb.

6 Mechanism Identification
General Features. Many different calculations have been used

to probe the response space. Only the distinctive results are pre-
sented. The displacement sequences �Fig. 8� affirm that two inher-
ently different �STC and SOC� responses exist. The most obvious
distinction is that the soft cores collapse during stage III. For the
range of topologies examined, honeycomb cores are always STC,
while cores with I- and corrugated topologies exhibit both re-
sponses, dependent on geometry. The major distinction between
the two domains can be ascertained from typical plots of the ve-
locities and kinetic energies �Figs. 9 and 10� of the constituents.
To be complementary, and to reveal aspects of the response over
different time domains, the KE results in Fig. 9 are presented over
the entire structural response time, while the velocity results are
confined to shorter times �of order tII�. For clarity of presentation,
the KE plots for the core have been excluded �since they can be
readily inferred from the total KE and the KE for the two faces�.

Strong Cores. In all STC designs, exemplified by the corrugated

Fig. 10 The kinetic energies and velocities for a square hon-
eycomb core with �̄=0.03, �=1, and �=2.68

Fig. 11 The durations of stages I, II, and III normalized by the
expressions derived using the analytic model „Sec. 1…:
tc / t0ln� / „1−�…, tII / „IT /2�YD

c
…, and tIII /L�� /�Y
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core with �̄=0.05, 
=4, and �=9.375 �Figs 9�a� and 9�b�� and the
honeycomb with �̄=0.03, 
=1, and �=2.68 �Fig. 10�, the total
kinetic energy in the structure, KEII

* , exhibits two peaks. The first
is coincident with time tc. The second coincides with the end of
stage II, tII, when all constituents have attained a common veloc-
ity, vcommon, apparent from plots of the front and back face veloci-
ties �Figs. 9 and 10�. Note that, for some strong cores, the front
face acceleration stops before the end of stage II, at time tb� tII
�Fig. 9�. Conversely, the back face continues to accelerate up to tII,
before attaining vcommon. The significance of tb will become ap-
parent later. In stage III, the KE’s and velocities of all constituents
decrease as energy is dissipated by plastic deformation of the
faces and the core. They reach zero simultaneously in all constitu-
ents. This occurs at time tIII, coincident with the back face reach-
ing its final, permanent deflection �Figs. 9 and 10�. Some differ-
ences among core topologies are apparent at durations close to tII
�cf. Figs. 9 and 10�. Namely, the square honeycomb and I-cores
exhibit distinctive elastic oscillations, duration tel, as the two faces
settle into a common velocity �Fig. 10�. Similar oscillations have
been reported by Deshpande and Fleck �4�. Conversely, the oscil-
lations found for the strong corrugated cores are less distinctive
�Fig. 9� and the two faces approach the common velocity differ-
ently. The importance of this distinction will become apparent

later. The durations of the stages �Fig. 11� merit comment. Those
for stage I, tc / t0 ln � / �1−��, and stage III, tIII /L�� /�Y, are the
same for all strong cores and completely consistent with the ana-
lytic models �Eqs. �13��. However, tII / �IT /2�YD

c � not only differs
from the analytic model, but also has different values for honey-
comb and corrugated cores. The implications will become appar-
ent later.

Soft Cores. In SOC designs, exemplified by a corrugated core
with �̄=0.02, 
=5.5, and �=8.70 �Figs. 9�c� and 9�d��, there are
marked differences in the kinetic energies and velocities from the
STC examples. While KEback still approaches zero at time t	 tIII,
the front face and the core continue to move and their kinetic
energies only become zero at longer times, t	 tarrest	2tIII. How-
ever, beyond tIII the back face is elastic and dissipation occurs
only due to core and front face plasticity. The temporal pattern of
velocities also differs. Most notable, the accelerations of the faces
stop at time, t	 tb� tII �Fig. 9�d��. One consequence is that the
velocity acquired by the back face is smaller than that found in
comparable strong cores. Additionally, between tb and tII, the front
face velocity increases. The implication is that the soft response is
coincident with events occurring at time tb. An investigation of the
phenomena occurring in soft I-cores with �̄=0.013, 
=3, and �
=4.69 �Fig. 12� reveals that, exactly at tb �0.55 ms in this case�,
the core buckles at the intersection with the back face.

Displacements. The back face displacements are distinctive
�Fig. 13�, visualized using displacement surfaces with the follow-
ing coordinates: core density, �̄, and relative thickness, 
. For all
strong cores, 
b is lowest at large �̄. Conversely, for all soft cores,

b is lowest for small �̄. All cores result in smaller displacements
at larger 
.

Plastic Strains. Preliminary assessment of the face tearing sus-
ceptibility uses the plastic strain as a metric. A more complete
ranking awaits incorporation of a dynamic failure criterion into
the FE code. The premise is that the largest equivalent plastic
strain in the faces, at any lengthwise location, averaged over the
width, l, provides the relevant scaling. �Tearing of the core is
regarded as relatively benign.� A series of plastic strain results is
presented in Fig. 14. Several features emerge.

a. The strains in the front face are considerably lower than
those found in the equivalent impulsive loading of the
same panels subject to support condition I �results not
shown�.

b. For the front face, in all cases �that is, for both STC and
SOC�, the strains are lowest for panels having similar
front and back face thickness, 
	1, and cores with low-
est relative density, �̄	0.01. Consequently, there is a
conflict with designs based on deflection �Fig. 13�. The
conflict is least for soft cores, which demonstrate benefit
in both tearing and deflection at low relative density. The
remaining conflict is in front face thickness, because for
thin faces, relatively large plastic strains arise due to
bulging between core members �Fig. 8�. A compromise
will be required.

c. The strains in the back face are invariably larger than at
the front, especially in the vicinity of the supports. But
again, the SOC designs result in smaller strains.

Force and Impulses. The reaction forces at the supports reveal
corresponding features �Fig. 15�a��. The strong cores generate
relatively large forces over duration tIII. During the same inter-
lude, the soft cores impart lower forces. However, for SOC de-
signs the forces persist to longer times, t� tIII	6 ms, and may
become larger after tIII. Trends in the peak force with core design,
plotted in Fig. 16, demonstrate the specific benefits of soft cores.
A further assessment of reaction forces will be described else-
where �13�. The integral of the forces over time provides the total
transmitted impulse, Itotal �Fig. 15�b��. This measure of the im-
pulse is found to be approximately the same as the free field

Fig. 12 A deformation sequence for a soft I-core showing the
dynamic elastic buckling of the core near the back face at in-
stant tb „Hc=0.3L, �̄=0.013, �=3, and �=4.69….
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momentum I0= p0t0 in all cases. As noted earlier, the back face is
elastic for t� tIII, indicating that the impulse beyond tIII does not
make a significant contribution to the permanent deformation of
the panel. The momentum acquired by the structure, plus the at-
tached water, at the end of stage II is more pertinent to the goals
of the present assessment. It is the analog of IT, specified by the
analytic model �11a�, which dictates KEII. The momentum deter-
mined numerically will be given a separate designation, MT.

Trends in MT and Itotal are summarized in Fig. 17 for a range of
core designs.

To compare these results with those predicted by the analytic
model, the dynamic strength of the core, �YD

c , must be ascertained.
A detailed assessment has found that, for the present designs, �8�
provides acceptable fidelity upon incorporating the front face ve-
locity ascertained at tc from the modified Taylor formula �3a�.

Fig. 13 A synopsis of back face displacement ascertained for a wide range of strong and soft
cores. The coordinates are the ratio of back to front face thickness, �, and the relative density
of the cores, �̄.
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Initially, the momentum MT is compared with IT determined from
�11a�. It is apparent �Fig. 17� that the analytic formula substan-
tially underestimates the momentum. The magnitude of the under-
estimate becomes most pronounced for designs with thin front
faces and for cores with lower dynamic strength. The discrepancy
suggests that the water imposes a larger momentum than assumed
by the existing model.

Kinetic Energies. Trends in the kinetic energy KEII acquired at
the end of stage II with attached water included are plotted in Fig.
18 for a range of STC designs. Comparison with the analytic
predictions again reveals that the model substantially underesti-
mates the numerical results.

Transition. The time scales associated with all of the foregoing

results have been used to present a plot of the proposed transition
parameter, � �see Eq. �17��, as a function of core relative density
�̄ and ratio of back to front face thickness 
 �Fig. 19�. Overlaying
the soft and strong core responses indicates that most of the re-
sults can be distinguished by a critical value, �th	0.2. That is,
smaller values of � result in strong responses and vice versa.
However, there are discrepancies, and it remains to establish a
rigorous criterion for distinguishing soft and strong responses.

In summary, STC designs can be distinguished by the following
characteristics.

a. The KE of the two faces and the core all approach zero at
time after impact, t	 tIII.

Fig. 14 A synopsis of trends in the maximum plastic strain in the front and back faces, ascer-
tained for a range of strong and soft cores. The coordinates are the ratio of back to front face
thickness, �, and the relative density of the cores, �̄.
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b. The front and back faces attain a common velocity at
time, t	 tII.

The corresponding SOC characteristics are as follows.

a. The front face and the core retain appreciable KE at times
after impact,t� tIII.

b. The acceleration of the faces stops at time after impact,
t	 tb� tII.

c. Between tb� t� tII, the front face accelerates.

The analytic model consistently underpredicts the acquired mo-
mentum and kinetic energy, attributed to an underestimate of the
water attached to the wet face at the end of stage II. An alternative
FSI model that rectifies this discrepancy for STC designs is pre-
sented in the next section. The remainder of the article is confined
to issues affecting the responses of strong core designs.

7 Alternative Fluid/Structure Interaction Model

7.1 The New Hypothesis. An examination of the velocities
and pressures in the water �Fig. 2� indicates that, beyond stage I,
a zone of cavitated water exists that widens rapidly with time.
Consequently, during stage II, the structure is in contact with cavi-
tated water moving in the same direction. The modified Taylor
solution �Eqs. �2� and �3�� does not characterize the response of
this zone. An alternative model is needed. The salient features are
as follows. Once formed, the left boundary of the cavitation zone
�at x=xcb� acquires an initial rate of translation, vcb	10cw, away
from the panel and then slows asymptotically to cw �Fig. 20�. This
speed is supersonic �4� but, more importantly, is initially two or-
ders of magnitude larger than the peak velocity acquired by the
front face. Consequently, the cavitation zone expands on a time
frame much shorter than the panel structural response, tIII �3�. In

addition, the rightmost boundary of the cavitation zone moves
quickly towards the panel. Inside the cavitation zone, the pressure
is zero, yet the cavitated fluid has positive velocity everywhere,
causing it to move toward the panel at velocity vr�x� �Fig. 21�.
That is, during stage II, a point in the cavitated fluid, initially at x,
retains a fixed positive velocity vr. At locations in the fluid close
to the face, vr exceeds the velocity of the panel, which is decel-
erating. Such regions within the cavitated fluid �visualized as a
porous medium �4�� may thus reattach to the panel, adding mo-
mentum. As this happens, these fluid regions decelerate to a ve-
locity approximately equal to the rate of translation of the face at
the instant of reattachment. The subsequent fluid pressure in this
reattached layer is positive: however, the level oscillates �Fig. 2�
due to acoustic interactions with the face and the ongoing reat-
tachment of water. A model incorporating these effects, but eliding
some of the complications, will be examined in the following
section. The hypothesis is that any regions within the cavitated
fluid having velocity exceeding the ultimate common speed of the
structure (attained at the end of stage II) will reattach by the end
of that stage and impart additional momentum.

This hypothesis enables the following three-step analysis.
Step I. Find the location of the cavitation front, xcb, from �2a�

by imposing p=0.
Step II. Determine the velocity of the water at the cavitation

front vcb�xcb� by inserting xcb into �3a�. This velocity is found to
be insensitive to the time during stage II.

Step III. Assert that this is the velocity of the cavitated water,
vr�x�, relative to its location x prior to the arrival of the incoming
blast wave.

7.2 Velocity of Cavitated Water. The development is pur-
sued by evaluating the instant, tcb�x�� tc, at which cavitation oc-
curs at location x in the water, by solving �2a� at zero pressure:

p�x,tcb� = p0�exp� x − cwtcb

cwto
� − � 2�

1 − �
+

�YD
c

p0
�

�exp�−
��x + cwtcb�

cwto
�

+
1 + �

1 − �
exp�−

x + cwtcb

cwto
� +

�YD
c

p0
� = 0 �22�

The ensuing time histories of the location of the cavitation front at
time tcb and its rate of translation �vcb= �dxcb /dt�� are plotted in
Fig. 20. Note that vcb is large, consistent with the preceding dis-
cussion. The fluid velocity vr�x� at the cavitation boundary at the
instant of cavitation is now obtained by inserting t= tcb into Eq.
�3a�:

vr�x� = v�x,tcb� =
2po

�wcw
exp� x − cwtcb�x�

cwto
� . �23�

The velocity, vr�x�, obtained in this manner refers to the position,
x, of the fluid in its undistorted configuration �in which the density
is �w�. Since the pressure and pressure gradient in the cavitated
zone are zero for t� tcb �at least until possible reattachment to the
panel�, the fluid velocity, vr�x�, remains constant at times tc� t
� tII. It, therefore, represents the actual residual velocity of the
water in the cavitation zone. This time invariant velocity profile,
vr�x�, is plotted in Fig. 21. Observe the relatively high velocity of
the fluid near the sandwich panel.

7.3 The Momentum Transfer. The momentum transferred to
the system at the end of stage II becomes:

MT = �mf + mc + mb − �wxa�vc. �24�

The equivalent momentum for the panel plus the same mass of
water is:

Fig. 15 „a… The reaction forces at the supports typifying the
difference between strong and soft cores „results for I-cores
are shown…. „b… The corresponding values of the impulse trans-
mitted to the structure determined from the reaction forces.
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MT = �w

xa

xc

vr�x�dx + MF + MB. �25�

Equating �24� and �25� gives

vc =

�w

xa

xc

vr�x�dx + MF + MB

mf + mc + mb − �wxa
. �26�

Combining �26� with the velocity requirement, vr�xa�=vc, gives
an equation

�mf + mc + mb − �wxa�vr�xa� − �w

xa

xc

vr�x�dx = MF + MB

�27�

that can be solved numerically to obtain xa and thus vc. Approxi-
mate analytic formulas are given in Appendix B.

The fidelity of this model is tested by comparing the velocity
distribution predicted by the improved model with that given by a
finite element calculation for a freestanding foam core sandwich
panel. The results are presented in Fig. 22. The excellent consis-

Fig. 16 A synopsis of trends in the peak reaction force with relative density and ratio of back
to front face thickness
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tency between the velocity profiles from the model and the simu-
lations justifies the postulate about the common velocity and the
extent of reattached water. Another validation is provided by a
comparison with numerical results for panels with foam cores and
steel front and back faces �Fig. 23� �4�. The momentum has been
calculated for a freestanding sandwich panel in which the core
yield strength parameter, �YD

c / p0, was varied from 10−3 to 0.5 �4�,
embracing domains II and III. Inspection of Fig. 23 reveals excel-
lent agreement between the improved model and the finite ele-
ment simulations.

7.4 Reinterpretation of the Acquired Momentum. Based
on this new interpretation of the momentum transfer, the transmit-
ted impulse and the kinetic energy have been recomputed and
compared with the present numerical results for strong cores in
Figs. 24 and 25. The evident consistency between the numerical
and analytic results affirms the applicability of hypothesis to struc-
tured cores. Note that the total momentum, inclusive of that in the

water �Fig. 24�, is appreciably larger than that in the structure and
has a different dependence on geometry. Moreover, additional mo-
mentum is transferred after the end of stage II, accounting for the
difference between the total transmitted impulse �ascertained from
the reaction forces� and MT, evident in the Fig. 17. It will be
apparent in the following section that the deformation of the struc-
ture in stage III is controlled by MTotal and not the total impulse.
The results also reveal that the benefit of the thin front face in
terms of the deflection metric �Fig. 13� is not attributable to its
influence on momentum transfer �2,3�, but, rather, to the reduced
deformations that occur in stage III because of the thick back face
�13�.

The momentum acquired by the corrugated core compares least
favorably with the model, in the sense that the model overpredicts
the momentum by �15%. This discrepancy appears to be linked
to the difference in tII between this core and the others �Fig. 11�
for reasons yet to be understood. Discrepancies remain for the
SOC designs, which do not attain a common velocity. A model
capable of predicting the momentum transfer for such cores re-
mains to be developed.

Now that a viable model has been devised for the impulse
transmitted to a strong core structure through stage II, the model
can be used as input for evaluation of the stage III response,
described in the next section.

Fig. 17 Trends in the momentum acquired at the end of stage
II „structure plus attached water…, designated MT, with ratio of
back to front face thickness for a range of strong cores. The
total impulse Itotal transmitted to the system is also plotted.
Comparisons with the predicted IT from the existing analytic
model, Eq. „11a…, are included.

Fig. 18 Trends in the kinetic energies acquired at the end of
stage II with ratio of back to front face thickness for a range of
strong cores. Results for KEII „structure plus attached water…
are plotted. A comparison with the existing analytic model „Eq.
„12b…… is included.

94 / Vol. 74, JANUARY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 19 Trends of the transition parameter � for I-core design

Fig. 20 Location and rate of translation of the cavitation
boundary as a function of time for the case shown in Fig. 2

Fig. 21 Characteristic velocity of cavitated fluid for the case
shown in Fig. 2

Fig. 22 The velocity distributions at the end of stage II for a
foam-core panel ascertained from the new analytic model com-
pared with the result obtained using ABAQUS/Explicit. The
core has relative density of �̄c=0.03, strength of �YD

c /p0=0.18,
and height of Hc=0.2 m. The thickness of the front face is hf
=6 mm so that �=3.125 and that of the back face is hb=8 mm.

Fig. 23 Comparisons of transmitted momentum calculated us-
ing the present model and that obtained numerically by Desh-
pande and Fleck †4‡. The freestanding panel unit has face thick-
ness hf=hb=10 mm so that �=1.875, core height Hc=0.1 m, the
density of the parent metal is 8000 kg/m3, and the relative den-
sity of the core is �̄c=0.1.
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8 Deflections
The first step in the analysis of the deflections is to ascertain

whether KEII �determined using the new model� governs the plas-
tic dissipation, Wpl, occurring in stage III, that is, whether the
extra momentum transferred during stage III can be discounted.
With this objective, plots of the trends in KEII and in the total
plastic dissipation, Wpl

total with panel design �Fig. 26� demonstrate
that, when KEII includes the correct contribution from the water, it
slightly exceeds Wpl

total. The slight excess is consistent with a small
contribution to stage III dissipation from the elastic reverberations
shown on Figs. 9 and 10. The major implication is that the mo-
mentum transferred after the end of stage II does not contribute to
the deformation of the panel. This momentum is transmitted di-
rectly to the supports and induces only elastic reverberations in
the panel. This finding, in conjunction with the new FSI model,
provides a firm basis for predicting the deflections and deforma-
tions that occur in stage III, discussed next.

A comparison of the deflections determined numerically with
those predicted by �16� has revealed major discrepancies �13�. A
deviation is not surprising, given that the deformation modes for
the present supports �condition II� differ from the condition I sup-
ports used to derive �16�. For condition II, most of the deforma-

Fig. 24 The momentum at the end of stage II „structure plus
attached water… determined numerically and the comparison
with the new analytic model „using Eq. „24……

Fig. 25 The kinetic energy at the end of stage II „structure plus
attached water… determined with the new analytic model and
comparison with numerical calculations for STC design

Fig. 26 Comparison of KEII determined using the new analytic
model with the total plastic dissipation in stage III calculated
numerically. The height of the core is Hc=0.2L and the relative
density of the core is �̄=0.03.

96 / Vol. 74, JANUARY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tion occurs through indentation of the back face and the core by
the supports �Fig. 8�. The sources of the discrepancy and alterna-
tive stage III models are discussed elsewhere �13�.

9 Concluding Comments
The present assessment has addressed aspects of the response

of metallic sandwich structures to underwater blast, emphasizing a
domain wherein the water cavitates before the core crushes. It has
unearthed several issues affecting the design of high performance
panels.

i. Two regimes have been illustrated exhibiting different
trends in displacement, plastic strain and reaction force.
One regime, designated STC, has characteristics consistent
with an analytic three-stage response model, albeit with
quantitative discrepancies. The other, designated SOC, ap-
pears to exhibit the best performance. The present results
predict that I- and corrugated cores having low relative
density, incorporating back faces somewhat thicker than
the front, are preferred.

ii. The behavior of STC designs has been compared with the
predictions of a three-stage analytic model �5�, which cor-
rectly describes the participating events, but has deficien-
cies. Foremost among these is an underestimate of the
momentum imparted to the system by the end of the sec-
ond stage, attributed to the previously overlooked charac-
teristics of the cavitated water formed by the reflected
pressure wave. A new model that accounts fully for the
momentum imparted by the end of stage II rectifies the
deficiency and accurately predicts the kinetic energy ac-
quired by the structure and attached water. The caviat is
that the model only applies to STC designs: characterized
by the occurrence of a common velocity for all constitu-
ents at the end of stage II. Soft cores do not acquire a
common velocity and it remains to extend the present pos-
tulate in such a manner that it encompasses these designs.

iii. For STC designs, the kinetic energy acquired by the end of
the second stage accounts fully for the plastic dissipation
that occurs in stage III �by bending, stretching, shearing,
and indentation of the panel�. That is, the extra momentum
imparted by the water during this stage does not contribute
to the panel deformation. This finding enables the analyti-
cally derived kinetic energy at the end of stage II to be
used to predict the stage III response. In practice, this op-
portunity has yet to be realized because the deformation
modes differ from those assumed in prior analytical mod-
els. Alternative models that rectify this deficiency are ex-
plored elsewhere �13�.

iv. Panels supported only at the back face develop smaller
front face strains than those supported at both front and
back faces, rendering this support system less susceptible
to front face tearing. The strains in the back face are larger
than those at the front, especially at the supports. The
strains in both front and back faces are lowest when SOC
designs are used, with implications for designing cores
giving the best tearing resistance.

One nuance concerning the momentum transfer merits addi-
tional comment. As noted here and elsewhere �2–5�, the classical
Taylor �17� model is entirely satisfactory for solid plates because
cavitation initiates at the plate wet surface, the �constant� velocity
acquired by the plate at first cavitation exceeds that for the cavi-
tated water, and there is no layer of attached water on the plate.
Thus the momentum and kinetic energy solely in the plate upon
first cavitation define the subsequent plastic deformation. The situ-
ation differs for the wet face of a sandwich panel even if the core
has negligible strength. In this case, after acquiring its velocity
upon initial cavitation, the front face decelerates, because it com-
presses the core �which still has mass� and accelerates the back
face. Now the cavitated water can catch the decelerating front

face. Consequently, the classical Taylor model �17� underesti-
mates the mass of water by neglecting the reattachment process
that occurs during stage II.

Finally we note that the present results for strong cores differ
from those presented by Rabczuk et al. �7�, who found the lowest
center displacement for their corrugated core panels at the lowest
relative density. Since their corrugated panels and ours should
behave similarly through stage II �despite the orientation orthogo-
nality�, the difference is tentatively attributed to the plastic dissi-
pation in stage III, governed especially by the differences in core
shear and indentation caused by orientation.
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Nomenclature
cel � elastic wave speed in base material
cw � sound speed in water

E, ET � Young’s modulus and plastic tangent modulus
of base material

hf ,hb � thickness of front face and back face,
respectively

Hc � height of the core
Heq � equivalent thickness of the sandwich panel
Hw � height of the water column used in the

calculations
I0 � free field momentum, I0= p0t0
IT � transmitted momentum �structure plus water� at

the end of stage I
Itotal � total momentum transmitted to supports

Ī � nondimensional impulse, Ī=2I0t0 / �mfHc�
KEconstituent � kinetic energy of a constituent �e.g., front face,

core, or back face�
KEI ,KEII � total kinetic energy �structure and attached wa-

ter� at the end of stages I and II, respectively
KEII

* � kinetic energy of the structure �excluding the
water� at the end of stage II

l � spacing between core members
lw � characteristic length of incident pressure pulse

in water, lw=cwt0
L � half-width of the sandwich beam

MB ,MF � momentum of the core plus back face, and that
of the front face plus attached water at t= tc

MT � total momentum of the structure and attached
water calculated at tII

mf ,mc ,mb � mass/area of front face, core, and back face
mw � mass/area of attached water �added mass� at t

= tc
m̄ � nondimensional mass, m̄=mc /mf
p � fluid pressure

p0 � peak pressure of free field impulse
p� � fluid pressure at t= tc

Preact � total reaction force at support
t0 � characteristic time of incident pressure pulse

tI= tc , tII , tIII � durations of stages I, II, and III, respectively
tarrest � time at which all constituents are arrested in

cases with soft cores
tb � time at which the back face acceleration stops

tcb � time at which the cavitation boundary arrives
at location x=xcb
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v � fluid velocity used in the extended Taylor
model

v� � fluid velocity at t= tc
vb ,v f � average velocities of back face and front face,

respectively
vc � common velocity of structure and attached wa-

ter in the new FSI model
vcb � rate of translation of the cavitation boundary

vcommon � common average velocity of all constituents at
the end of stage II

vface � velocity of front face at t= tc
vr � residual velocity of cavitated water used in the

new FSI model
Wpl

constituent � plastic dissipation in a constituent
Wpl

total � total plastic dissipation in the beam during
stage III

x � distance from front face of the panel, with wa-
ter residing in x�0

xa � width of the attached water from the new FSI
model at the end of stage II

xc � location of first cavitation in water
xcb � location of the cavitation boundary

� � fluid-structure interaction parameter,
�=�wcwt0 /mf


 f ,
b � mid-span deflection of front and back face,
respectively


 � ratio of face plate thickness, 
=hb /hf
	c � core crush strain

	pl
max � maximum plastic strain in face plates
	Y � yield strain of base material

� ,� � dimensionless parameters used for wave propa-
gation in Sec. 2

�̄ � relative density of the core
� ,�w � density of base metal and that of water,

respectively
�Y � yield strength of base material

�YD
c � dynamic yield strength of the core.

Appendix A: A Synopsis of Numerical Simulations for
Square Panels

The numerical model described in Sec. 5 has been used to
simulate square panels for each of the core topologies. For the
simulations, the panels are supported along the entire perimeter
around the back face. An example of a simulation for a strong
I-core, relative to that for a beam is presented in Fig. 27: the
deformed shapes at the bottom �beam� and top �panel� have been
obtained using separate simulations. Note that the central areas of
the plates experience about the same deflections as the mid-span
areas of the beams. Moreover, the buckling modes of the core
members are identical. This result is typical of many such com-
parative simulations.

Appendix B: Analytic Approximations
Many numerical simulations have been carried out for a wide

parameter range �0��YD
c / p0�0.35 and 0���8� encompassing

domain II. The results have been fitted into analytical forms that
can be used with Eqs. �24� and �25� to determine the final mo-
mentum for any sandwich design within this domain. The first
cavitation plane is located at

x̄c �
xc

cwt0
	 4.8��YD

c

p0
�1.1

�0.24 − 0.015� + 0.0012�2� . �B1�

An exponential function is most applicable for the reference field:

v̄r �
vr

p0/��wcw�
= A exp�x̄/T� , �B2�

with

A 	 �0.08 + 2.2��f����1 − 0.28
�YD

c

p0
− 0.18��YD

c

p0
�2� ,

T 	 �0.63 − 0.028� + 0.003�2��1 − 0.047
�YD

c

p0
� ,

where f���=��/�1−��. Since, at location x̄= x̄a, v̄c= v̄r�x̄a�, therefore

x̄a = T�ln v̄c − ln A� �B3�

With Eqs. �B1� to �B3�, Eq. �26� can be rewritten as

v̄c =
IT + A · T · exp�x̄c/T�

mf + mc + mb

�wcwt0
− T�ln v̄c − ln A − 1�

, �B4�

which can be solved for v̄c and thus x̄a.
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A Mathematical Model for
Frictional Elastic-Plastic
Sphere-on-Flat Contacts at
Sliding Incipient
This paper presents a mathematical model for frictional elastic-plastic sphere-on-flat
contacts at sliding incipient. The model is developed based on theoretical work on con-
tact mechanics in conjunction with finite-element results. It incorporates the effects of
friction loading on the contact pressure, the mode of deformation, and the area of con-
tact. The shear strength of the contact interface is, in this paper, assumed to be propor-
tional to the contact pressure with a limiting value that is below the bulk shear strength
of the sphere. Other plausible interfacial-shear-strength characteristics may also be
implemented into the contact model in a similar manner. The model is used to analyze the
frictional behavior of a sphere-on-flat contact where the experimental data suggest that
the interfacial shear strength is similar in nature to the one implemented in the model.
The theoretical results are consistent with the experimental data in all key aspects. This
sphere-on-flat contact model may be used as a building block to develop an asperity-
based contact model of rough surfaces with friction loading. It may also serve in the
modeling of boundary-lubricated sliding contacts where the interfacial shear strength in
each micro-contact is coupled with its flash temperature and related to the lubricant/
surface physical-chemical behavior. �DOI: 10.1115/1.2178838�

Introduction
Levinson et al. �1� have carried out an experimental study to

evaluate the contact and friction theories presented in Refs. �2–4�.
In the experiments, a copper-rod specimen with a spherical end is
brought into contact with either a steel or sapphire flat surface.
The copper is significantly softer than the steel or sapphire with
negligible strain hardening so that the contact system in the ex-
periment is consistent with the theoretical models of an elastic-
perfectly-plastic sphere against a rigid flat. Furthermore, the sur-
faces are well polished to comply with another assumption of
perfectly smooth contact.

The specimens are thoroughly cleaned and the experiments are
carried out under ambient conditions. The friction force in the
contact is measured and recorded at the sliding inception, along
with the applied normal load. The experiments cover a wide range
of loading conditions from elastic contact to contact with signifi-
cant plastic deformation. The friction-normal-load results are non-
dimensionalized according to the theory in �4�, which then exhibit
a fairly similar behavior independent of the spherical diameters of
the copper and the copper-steel or copper-sapphire contact sys-
tems. Figure 7 of Ref. �1� shows that the static coefficient of
friction is about 0.3 for an elastic contact �i.e., P / Pc�1.0�, ex-
hibits a steep reduction to about 0.1 as the normal load increases
towards P / Pc=50, and levels off to around 0.06 and 0.07 as P / Pc
goes beyond 150 at which the contact becomes significantly plas-
tic. The results are shown in Fig. 1, where P is the applied normal
load and Pc is the normal load causing initial plastic yielding in
the contact with no friction.

While the nondimensionalization makes the results independent

of the sizes and materials of the specimens, the frictional behavior
derived from the experiments appears to be characteristically dif-
ferent from that predicted by the theory of Kogut and Etsion �4�.
A comparison of the theory and experiment is presented in Fig. 8
of Ref. �1�, showing a characteristic departure of the friction be-
havior when the applied normal load is beyond a relatively small
value of P / Pc=9. The results and the theory-experiment compari-
son are shown in Fig. 2. A key assumption of the theories finished
in �2,4� is that the contact junction cannot support a tangential
force when a high normal load brings the contact into significant
plastic deformation. The disagreement between the theory and the
experiment prompted the authors of �1� to question this key the-
oretical assumption. It also suggests the need for further theoreti-
cal studies of elastic-plastic point contacts with friction loading.

This paper presents a mathematical model of frictional spheri-
cal contact at sliding incipient. It is based on the theories of fric-
tional contact advanced by Tabor �5� and Johnson �6� in conjunc-
tion with some recent analytical and numerical results of Zhao et
al. �7� and Zhang et al. �8�. The effects of friction loading on the
contact pressure, the mode of deformation, and the area of contact
are modeled. With a plausible description of the interfacial shear-
strength characteristics suggested by the experimental data, the
model yields results of a frictional sphere-on-flat contact that ap-
pear to be consistent with those of the experiments of �1� in every
key aspect. The point-contact model developed in this paper may
be used as a building block to develop an asperity-based contact
model of rough surfaces with friction loading. It may also serve in
the modeling of boundary-lubricated sliding contacts where the
interfacial shear strength in each micro-contact is coupled with its
flash temperature and depends on the lubricant/surface physical-
chemical properties. The modeling concepts and techniques are
presented next followed by results and discussions.

Modeling
The frictional contact between an elastic-perfectly-plastic

sphere and a rigid flat at sliding inception is modeled. The contact
surfaces are assumed to be perfectly smooth. The sphere deforms
elastically at a small normal approach between the sphere and the

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received June 27, 2005; final manuscript
received December 9, 2005. Review conducted by A. Maniatty. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
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rigid flat. As the normal approach is increased beyond a first criti-
cal value, the contact becomes elastic-plastic. As the normal ap-
proach reaches a second critical value, it becomes fully plastic.
The values of the two critical normal approaches depend on the
friction force in the contact. Figure 3 shows the finite-element
results �8� of the critical normal approaches as functions of the
friction coefficient in the contact between an elastic-perfectly-
plastic cylinder and a rigid flat. The modeling presented below
includes four components: the interfacial shear strength, the criti-
cal normal approaches, the contact pressure, and the area of con-
tact.

Interfacial Shear Strength. The friction force that can be de-
veloped at the sliding inception depends on the shear strength of
the contact interface. While the shear strength characteristics can
be complex, experiments �9,10� and fundamental analyses �11�
have shown that the interfacial shear strength is approximately
proportional to the contact pressure with various surface-film ma-
terials. Furthermore, Johnson ��6�, p. 236� states that, due to con-
tamination or lubrication, the maximum shear stress that the inter-
face can sustain is less than that of the bulk solid. In this paper, the
interfacial shear strength is assumed to be proportional to the con-

tact pressure until it reaches a limiting value that is below the
shear strength of the sphere bulk. It is given by the following
equation:

� = �cp cp � �m

�m cp � �m
� �1�

where � is the interfacial shear strength of the contact, p is the
contact pressure, and �m is the limiting value of the interfacial
shear strength. Two dimensionless input parameters are used to
calculate the friction force with a given applied normal load. One
is the shear-strength-pressure proportionality constant, c, and the
other is the ratio of the limiting interfacial shear strength to the
shear strength of the solid bulk, �̄m. The static coefficient of fric-
tion is defined as the ratio of the friction force and the normal
force at sliding incipient of the contact. In this paper, the average
pressure and shear stress in the contact junction are used as the
modeling variables. The friction coefficient may then be expressed
as:

� = �/p �2�

Fig. 1 Experimental results shown in Fig. 7 of Ref. †1‡

Fig. 2 Experimental and theoretical results shown in Fig. 8 of Ref. †1‡ „the theoretical
curve is generated by the model of Ref. †4‡…
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It should be pointed out that other plausible interfacial-shear-
strength characteristics can be implemented as well under the
modeling principle presented in this paper. Of particular interest is
the boundary-lubricated sliding contact where the interfacial shear
strength depends on the contact temperature and the lubricant/
surface physical-chemical properties.

Critical Normal Approaches. The first and second critical nor-
mal approaches divide the contact deformation into three modes:
elastic, elastic-plastic, and fully plastic. Referring to Fig. 3, both
of them decrease as the friction coefficient increases. The first
critical normal approach, �1���, corresponds to the initial yielding
of the spherical contact. For a frictionless contact with the von
Mises’ yielding criterion, it is given by �6�

�1������=0 = �10 = �3kY�

4
	2�Y

E
	2

R �3�

where R is the radius of the sphere, Y and E are the uni-axial
tensile strength and Young’s modulus, and ky is a constant with a
typical value of 1.067. For a frictional contact and following the
work of Hamilton �12�, it can be shown that the second stress
invariant, J2, at any point in the contacting sphere is proportional
to the normal approach and is a certain function of the friction
coefficient. For the state of initial yielding in the contact, it may
be expressed as:

J2 =
Y2

3
= J2L max���� 4E

3�
	2�1���

R
�4�

where J2Lmax
��� is a dimensionless function of the friction coeffi-

cient at the location in the sphere where J2 reaches its maximum.
Dividing Eq. �4� by its frictionless counterpart and rearranging
yields

�1���� =
�1���
�1�0�

=
J2L max�0�

J2L max���
�5�

Equation �5� may be evaluated numerically. With a Poisson’s ratio
of �=0.3, the results are best fitted by the following equation:

log��1����� = 3.80�3 − 6.51�2 + 0.67� − 0.01 �6�
The results are also very similar to the finite-element results ob-
tained for a cylinder-on-flat contact shown in Fig. 3.

The second critical normal approach �2��� defines the onset of
fully plastic deformation. For a frictionless contact, Johnson ��6�,
p. 179� shows that the load causing the spherical contact to be-

come fully plastic is about 400 times the load causing the initial
yielding. This relation leads to the following expression for the
frictionless second critical normal approach:

�2������=0 = �20 = 800�Y

E
	2

R �7�

For a frictional contact, the second critical approach is determined
based on the results that the theoretically determined �1���� is
closely matched by the finite-element results for a cylindrical con-
tact. It is assumed that the normalized second critical approach,
�2����=�2��� /�20, is also similar to that obtained from the finite-
element calculation. An approximate expression can then be de-
rived for �2���� by curve-fitting the finite-element results of �8�
and is given by

log��2����� = 4.40�2 − 8.83� + 0.03 �8�

Contact Pressure. The contact pressure may be significantly
reduced by the friction loading, especially in a plastic contact
�5,6�. Expressions for the average pressure in a spherical contact
are derived in this section as functions of the contact normal ap-
proach and friction coefficient, p�� ,��. Consider an elastic con-
tact, which corresponds to a normal approach less than �1���. The
friction force generally has small effects on the contact pressure
�6�. Therefore, it is assumed to be only dependent on the normal
approach and is given by �6�

p��,�� =
4E

3�
� �

R
	1/2

� � �1��� �9�

When � is increased beyond the second critical normal ap-
proach, �2���, plastic flow occurs. For a frictionless contact, the
contact pressure at ��=�2�����=0 or �20 reaches its maximum pos-
sible value or the indentation hardness of the sphere, H. Thus, the
frictionless contact pressure for ���20 can be written as:

�p��,����=0 = H � � �20 �10�

With friction loading, the pressure that can be developed in a fully
plastic contact is dependent on the interfacial shear strength. The
pressure and the shear strength may be related by the Tabor equa-
tion �5�:

p2 + 	�2 = H2 � � �2��� �11�

where 	 is a constant. Combining this equation with Eq. �2� yields
a general expression for the pressure in a fully plastic contact

p��,�� =
H

�1 + 	�2�1/2 � � �2��� �12�

With the contact pressure determined for both ���1��� and
���2���, a pressure expression can be obtained for a contact in
elastic-plastic deformation. For a frictionless elastic-plastic con-
tact, Francis �13� characterizes the pressure as a logarithmic func-
tion of the normal approach. Based on that, Zhao et al. �7� derive
the following expression for the pressure:

�p��,����=0 = pY0 + �H − pY0�
ln � − ln �10

ln �20 − ln �10
�10 � � � �20

�13�

where pY0 is the pressure at the initial yielding. It is assumed that
the logarithmic relation also holds when friction loading is ap-
plied. Equation �13� may then be generalized to calculate the pres-
sure of a frictional contact in the elastic-plastic regime. For a
given normal approach and friction coefficient, the pressure ex-
pression is given by

p��,�� = pY��� + �pF��� − pY����
ln � − ln �1���

ln �2��� − ln �1���

Fig. 3 Effects of friction on the critical normal approaches and
modes of deformation in an elastic-perfectly-plastic cylinder-
on-flat contact
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�1��� � � � �2��� �14�

where pY��� is the pressure at �=�1��� calculated with Eq. �9�
and pF��� is the pressure at �=�2��� determined by Eq. �12�.

Area of Contact. Expressions to calculate the area of a spheri-
cal contact are derived in this section as functions of the normal
approach and friction coefficient. For an elastic, frictionless con-
tact, the area is given by �6�

�A��,����=0 = �R� � � �10 �15�

where R is the radius of the sphere. For a fully plastic, frictionless
contact, it may be calculated by �14�

�A��,����=0 = 2�R� � � �20 �16�

For an elastic-plastic contact, Zhao et al. �7� and Jeng and Wang
�15� model the area of contact using a polynomial function that
smoothly joins Eqs. �15� and �16�. The resulting expression is
given by

�A��,����=0 = �1 + 3�̄2 − 2�̄3��R� �10 � � � �20 �17�

where �̄= ��−�10� / ��20−�10�.
The area of contact with friction loading is now modeled.

Based on experimental and theoretical studies �5,6�, friction may
cause the growth of the contact junction. The amount of junction
growth depends on the interfacial shear stress and the mode of
deformation. Thus, the area of contact may be expressed as the
frictionless area multiplied by a junction-growth factor that is a
function of both the normal approach and the friction coefficient:

A��,�� = kA��,��A��,0� �18�

A model for kA�� ,�� is developed below. For an elastic contact,
the area, similar to the pressure, is assumed to be unaffected by
the tangential force. Furthermore, the junction growth is absent
with �=0. Therefore,

kA��,�� = 1.0 � � �1��� or � = 0 �19�
Next, for a fully plastic contact with a given friction coefficient,
the pressure and interfacial shear stress no longer change as �
further increases beyond �2���. Therefore, it is assumed that
kA�� ,�� also reaches an upper bound at �=�2���:

kA��,�� = kAl��� � � �2��� �20�

In the range �1�������2��� of the normal approach with a
given value of �=� / p, the shear stress in the contact would be
given by an expression similar to Eq. �14� for the pressure. Since
the junction growth is induced by the shear stress, kA�� ,�� may be
approximated by an equation comparable to Eq. �14�. It is given
by

kA��,�� = 1 + �kAl��� − 1�
ln � − ln �1���

ln �2��� − ln �1���
�1��� � � � �2���

�21�

The upper-bound junction growth function, kAl���, defined in
Eq. �20� needs to be modeled. This function may be determined
by first transforming it into a function of the interfacial shear
stress, kAl� ���. For a fully plastic contact, Eq. �12� in conjunction
with Eq. �2� yields a relation between the shear stress and the
friction coefficient:

� =
�H

�1 + 	�2�1/2 � � �2��� �22�

Now consider a contact that is subjected to both normal and tan-
gential loading and is fully plastic. Under such a condition, the
characteristics of the junction growth may be captured by the
slip-line field solution of a rigid-perfectly-plastic wedge. As
shown by Johnson �16�, the tangential force causes the plastic
zone to be shifted in the direction of the force and a volume of

material to be agglomerated at the leading shoulder of the wedge.
A similar shifting and agglomerating process is also revealed in
the finite element results �8�. This process is intensified as the
shear stress increases and is likely to be the cause of the friction-
induced junction growth. As the interfacial shear stress ap-
proaches the shear strength of the bulk solid, k, the upper-bound
junction-growth function reaches its maximum value, which is
estimated next.

Figure 4 shows a schematic of the slip-line field solution of a
rigid-perfectly-plastic wedge with �
k. With such a high interfa-
cial shear stress, the plastic deformation is largely confined to the
thin surface layer �8,16�. Consequently, volume conservation re-
quires that the material agglomerated at the leading edge occupies
a volume equal to that of the apex segment of the wedge that
would have penetrated into the flat surface. The slip-line solution
further suggests that the shape of the agglomerated material is
similar to that of the penetrated segment of the wedge �16�, as
illustrated in Fig. 4. Thus, the amount of the junction growth 
l
may be approximated by


l =
bi

sin 	w
�23�

where bi is the semi-width of the frictionless contact at the given
normal approach of the wedge. The size of contact with friction is
then given by

l = �1 +
1

2 sin 	w
	2bi �24�

The maximum junction-growth factor kAl0 is the ratio of l to 2bi
and so

kAl0 = 1 +
1

2 sin 	w
�25�

For a relatively large semi-wedge angle, 	w, corresponding to a
cylindrical contact, Eq. �25� yields kAl0
1.5. A value of kAl0
=1.4 is chosen in this study to model the junction growth of a
spherical contact. The choice is based on the above order-of-
magnitude analysis in conjunction with the consideration that the
friction loading should not increase the load capacity of the point
contact.

For a fully plastic contact, the upper-bound junction growth
function, kAl� ��� or kAl���, increases from unity to kAl0 as the in-
terfacial shear stress, �, increases from zero to k. This increase
may be divided into two stages based on the analysis of the junc-
tion growth by Kayaba and Kato �17� and the finite-element re-
sults in �8�. In the first stage, the junction growth is mild before
the shear stress reaches a high value of �=0.8–0.9k. In the second
stage of �→k, it increases rapidly to reach the maximum value of
kAl0. Therefore, the following piecewise linear function is used to
model kAl� ���:

Fig. 4 Schematic of the slip-line field solution of a rigid-
perfectly-plastic wedge under combined action of normal and
tangential loading
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kAl� ��� = �1 + �kAlc − 1�
�

�c
0 � � � �c

kAlc + �kAl0 − kAlc�
� − �c

k − �c
� � �c

� �26�

In this paper, kAlc=1.1 and �c=0.85k are used to describe the mild
junction growth in the first stage. Finally, transforming kAl� ��� into
kAl��� using Eq. �22� yields

kAl���

= �1 + �kAlc − 1�
�H

�c�1 + 	�2�1/2 0 � � � �c

kAlc + �kAl0 − kAlc�
�H − �c�1 + 	�2�1/2

�k − �c��1 + 	�2�1/2 � � �c
�

�27�

where �c is related to �c by Eq. �22� to give

�c = 
�H

�c
	2

− 	�−1/2

�28�

Equations �18�, �21�, and �27� form a complete set to model the
contact area and the friction-induced junction growth of a spheri-
cal contact.

Summary and Nondimensionalization. The key equations of
the four components of the model are summarized below:

Interfacial shear strength

� = �cp cp � �m

�m cp � �m
� �1��

� = �/p �2��
Critical normal approaches

�1������=0 = �10 = �3kY�

4
	2�Y

E
	2

R �3��

log��1����� = 3.80�3 − 6.51�2 + 0.67� − 0.01 �6��

�2������=0 = �20 = 800�Y

E
	2

R �7��

log��2����� = 4.40�2 − 8.83� + 0.03 �8��
Contact pressure

p��,�� =�
4E

3�
� �

R
	1/2

� � �1���

pY��� + �pF��� − pY����
ln � − ln �1���

ln �2��� − ln �1���
�1��� � � � �2���

H

�1 + 	�2�1/2 � � �2���
� �29�

Area of contact

A��,�� = kA��,��A��,0� �18��

A��,0� = A���,����=0 = � �R� � � �10

�1 + 3�̄2 − 2�̄3��R� �10 � � � �20

2�R� � � �20
� �30�

kA��,�� = �
1.0 � � �1���

1 + �kAl��� − 1�
ln � − ln �1���

ln �2��� − ln �1���
�1��� � � � �2���

kAl��� � � �2���
� �31�

For most metals obeying the von Mises’ yield criterion, the
tensile strength, Y, the shear strength, k, and the indentation hard-
ness, H, of the material may be related by Y =H /3 and k=Y /�3
�6�. Furthermore, the Poisson’s ratio may be assumed to be �
=0.3. Then the model equations summarized above along with
other key equations can all be made dimensionless and indepen-
dent of the radius and basic material constants of the sphere such
as the Young’s modulus and tensile strength. The following nor-
malizations are carried out. The normal approach is normalized by
R�Y /E�2. The contact pressure and the interfacial shear stress are
normalized by Y. The area of contact is normalized by R2�Y /E�2.
And the normal and friction forces are normalized by YR2�Y /E�2.

Tabor’s constant 	 in Eq. �11� may be estimated by considering
an extreme situation. Under high vacuum conditions, a high fric-
tion coefficient of the order of 10 or higher is obtained for clean

metal surfaces �5,18�. In this case, the shear stress approaches the
bulk shear strength and the shear flow is observed. As a result, the
real area of contact increases substantially and the pressure is
greatly reduced. In the extreme, Eq. �11� yields 	
�H /k�2=27.

The model equations are solved iteratively with a numerical
method. The input is the normal approach of the sphere to the
rigid flat. The solution yields a normal force, a friction force, and
thus a friction coefficient corresponding to sliding incipient of the
contact.

Results and Discussions
The model developed in this paper is used to further study the

frictional behavior of the sphere-on-flat contact problems of �1�.
Dimensionless results are obtained and presented in the same for-
mat as the experimental results for easy comparison and analysis.
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Values for the two dimensionless parameters, c and �̄m, which
characterize the interfacial shear strength with Eq. �1�, need to be
chosen for the calculation. That the friction coefficient shown in
Fig. 1 starts around 0.3 at a low normal load suggests that a
sensible value for the shear-strength-pressure proportionality con-
stant is c
0.3. The value for the ratio of the limiting interfacial
shear strength to the bulk shear strength is determined by match-
ing the calculated friction coefficient to that in the experiment at a
very high normal load. This determination yields a value of �̄m

0.35.

Figure 5 shows the friction coefficient as a function of the di-
mensionless normal load, P / Pc. The results are shown to be con-
sistent with the experimental data of Fig. 1 for both the trend and
the level. The results are rearranged to show a dimensionless fric-
tion force, Q / Pc, against the dimensionless normal load, P / Pc,
for small values of P / Pc up to 14, as is done in Fig. 8 of �1�.
Figure 6 shows this result, which also exhibits a consistent trend
and magnitude with the experimental data of Fig. 2. It should be
pointed out that the interfacial parameters of c=0.3 and �̄m
=0.35 are chosen based on the initial and final values of the mea-
sured friction coefficient of the contact. They do not totally dictate
the trend of the friction coefficient as the applied normal load
increases. This trend can be significantly affected by the contact
pressure and the area of contact in addition to the characteristics
of the interfacial shear strength. The reasonable match in the trend
between the theory and the experiment offers support to the math-
ematical model, in addition to the underlying contact-mechanics
fundamentals.

Levinson et al. �1� have also measured the areas of contact
under various conditions to evaluate the theoretical results of
Kogut and Etsion �3� and the theory of friction-induced junction
growth of Tabor �5�. In particular, they measure the residual con-
tact area after unloading from a high normal load of P / Pc=220,
which generates a large amount of contact plastic deformation in
the copper specimen. They carry out another area measurement
with a new copper specimen, this time unloading from P / Pc
=220 with sliding friction. The measured areas of contact are es-
sentially the same with or without friction loading, which prompts
the authors of �1� to question Tabor’s theory of junction growth.

With the values of c=0.3 and �̄m=0.35, which are used to ob-
tain the results of Figs. 5 and 6, the areas of contact are also
calculated under various conditions and compared with the experi-
mental results of �1�. At the normal load of P / Pc=220, the cal-
culation yields an area of contact normalized by the area of con-
tact at P / Pc=1.0 to be A /Ac=84.4. For the frictionless contact,
the calculated area ratio is 85.9. Physically, the former should not
be smaller than the latter. The small percentage difference be-
tween the two results is evidently due to the modeling imperfec-
tion as the contact-area junction growth is enforced in the model
for a given normal approach instead of a given normal load. The
two area results calculated above essentially suggest that the cur-
rent model predicts a negligible junction growth under the given
normal-loading and friction conditions, consistent with the experi-
mental results of �1�. That the junction growth is negligible with a
low friction coefficient is also suggested in Johnson’s theory �6�.
Using the model of a rigid-perfectly-plastic wedge against a rigid

Fig. 5 Theoretical results corresponding to the experimental data of Fig. 1 „c=0.3
and �̄m=0.35…

Fig. 6 Theoretical results corresponding to the experimental data of Fig. 2 „c=0.3
and �̄m=0.35…
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flat, Johnson ��6�, Fig. 7.16� shows that the junction growth is
only a few percent if the friction coefficient is in the 0.06–0.07
range.

It may be premature to draw a conclusion that friction generally
does not cause a junction growth based on limited experimental
data or theoretical results. Figure 7 presents the contact-area re-
sults calculated under a wide range of normal-loading and friction
conditions. The areas obtained with c=0.3 and �̄m=0.35 are basi-
cally identical to those obtained for the frictionless contact. Fur-
thermore, the results match very well with the experimental data
shown in Fig. 4 of �1�. However, the theoretical analysis predicts
a significant junction growth with a high level of contact friction.
At P / Pc=200, for example, the friction-induced junction growth
is predicted to be about 25% with �̄m=0.7 and 65% with �̄m
=1.0. Large friction-induced junction growths were experimen-
tally observed with chemically clean metallic surfaces �19,20�,
with which both the shear-strength-pressure slope �i.e., c� and the
limiting interfacial shear strength in the contact can be of high
values.

The results presented in this paper are relatively brief, focusing
on comparison with some experimental results and analysis of the
observed frictional behavior. Nevertheless, the results and their
agreement with single point-contact experimental data lend fur-
ther credence to the model in addition to the theoretical founda-
tion of �5,6� on which it is based. This sphere-on-flat contact
model may serve as a key building block to develop a contact
model of engineering surfaces with friction loading. One approach
to model nominally flat rough-surface contacts is to envision the
roughness into spherical-tipped asperities of some statistical
height distribution, which is pioneered by Greenwood and Will-
iamson �21� and further advanced by many others. The majority of
asperity-based models, to the authors’ knowledge, have been for
frictionless contacts. Thus, it would be an original contribution to
the modeling of rough-surface contacts to incorporate friction
loading into the model. The frictional sphere-on-flat model devel-
oped in this paper can be readily transported into the surface
model at the asperity contacts. In addition, the interfacial-shear-
strength relation described in this paper may be easily replaced by
other plausible shear-strength characterizations so that a larger
class of the contact problems may be modeled. An example is the
contact of metallic surfaces with boundary lubrication where the
shear strength in an asperity micro-contact is significantly influ-
enced by its flash temperature and the lubricant/surface physical-
chemical behavior. Work in this direction is in progress.

Conclusion
This paper presents a mathematical model for frictional elastic-

plastic sphere-on-flat contacts at sliding incipient. The model is
developed based on theoretical work on contact mechanics in con-

junction with finite-element results. It incorporates the effects of
friction loading on the contact pressure, the mode of deformation,
and the area of contact. The shear strength of the contact interface
is assumed to be proportional to the contact pressure with a lim-
iting value that is below the bulk shear strength of the sphere.
Other plausible shear-strength characteristics can be equally
implemented into the contact model in a similar manner. The
model is used to analyze the frictional behavior of a sphere-on-flat
contact studied in Refs. �1,22�. The theoretical results are consis-
tent with the experimental data in all key aspects. The analysis
reveals that relatively low limiting shear strength of the contact
interface is likely the key factor leading to the steep reduction in
the measured friction coefficient as the applied normal load is
increased. This low limiting shear strength is also likely to be the
main reason for the negligible junction growth observed in the
experiments. This sphere-on-flat contact model may be used as a
building block to develop an asperity-based contact model of
rough surfaces with friction loading. It may also serve in the mod-
eling of boundary-lubricated sliding contacts where the interfacial
shear strength in each micro-contact is coupled with its flash tem-
perature and related to the lubricant/surface physical-chemical be-
havior.
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On the Admissibility of Given
Acceleration-Dependent Forces in
Mechanics
In his book “A Treatise on Analytical Dynamics,” Pars asserted that acceleration-
dependent forces are inconsistent with one of the fundamental principles of mechanics,
namely, with the superposition principle, thus spreading among mechanical scientists the
idea that such forces are not admissible in mechanics. This article demonstrates that
given forces that depend on acceleration or higher derivatives are admissible in mechan-
ics and shows that this assertion in Pars’s book is fallacious and the only condition for
the applicability of such forces is the equation of motion possessing a unique
solution. �DOI: 10.1115/1.2187528�

1 Problem Statement
Traditionally, given forces in mechanics are considered as func-

tions of position, velocity, and time, i.e., F=F�x , ẋ , t�, where x are
generalized coordinates. However, from time to time the question
arises as to whether given forces can depend on acceleration as
well: F=F�x , ẋ , t ; ẍ�, i.e., as to whether traditional methods of
dynamics hold for acceleration-dependent forces.

In 1964, Pars asserted in his book �1� that acceleration-
dependent forces are inconsistent with one of the fundamental
principles of mechanics, namely, with the superposition principle.
Well-known and widely used as a textbook, that book has spread
among mechanical scientists the idea that such forces are not ad-
missible in mechanics. Nevertheless, both theoretical and applied
works in which acceleration-dependent forces are used are pub-
lished too.

Before Pars’s book was published, Birkhoff in his well-known
book �2� wrote generalized forces as functions that depend not
only on position, velocity or time, but on acceleration as well.
After Pars’s book had been published, works that used such forces
were published too. The use of acceleration-dependent forces in
Ref. �3� made it possible to explain the secular retardation of the
Earth’s rotation. There are examples of the use of acceleration-
dependent forces in an attitude controller �4� and in space me-
chanical arm control systems �5�.

Thus, on the one hand, acceleration-dependent forces do exist
and are used, but on the other hand, it is argued �and proved by
Pars� that such forces are not admissible in mechanics. The objec-
tive of this article is to analyze this contradiction.

Section 2 cites Pars’s proof �1� on the basis of which he inferred
the inadmissibility of acceleration-dependent forces in mechanics.
Section 3 shows that the admissibility of these forces may be
demonstrated using traditional methods of mechanics. Section 4
demonstrates that Pars’s assertion is fallacious and shows the
causes of this fallacy. Section 5 demonstrates the admissibility of
forces that depend not only on acceleration, but on higher deriva-
tives as well provided that the equation of motion possesses a
unique solution. In Sec. 6, it is noted that this condition may not
be satisfied in the general case. However, this does not suggest the
inadmissibility of a particular force; this only points to the neces-

sity of refining the mathematical model by including “finer” fac-
tors that affect the motion of the system under consideration or,
where control actions are involved, to the fact that this force is
physically unrealizable.

2 Pars’s Proof
In support of his conclusion that given acceleration-dependent

forces are not admissible in mechanics, Pars gives the following
proof using the rectilinear motion of a particle of mass m �Fig.
1�a�� as an example �1�.

“Consider two forces: m��f� and m��f� where f is the accel-
eration, f = ẍ. The functions � and � may also involve x, u= ẋ and
t, but it is the dependence on f that primarily concerns us at the
moment and that is emphasized in the notation. We now consider
three experiments. In the first experiment the particle is acted on
by the force m�, in the second by m�, and in the third by m��
+��. The values of x ,u , t are the same in all three experiments. If
we denote the accelerations in the three experiments by f1 , f2 and
f3, we have

f1 = ��f1� �1�

f2 = ��f2� �2�

f3 = ��f3� + ��f3� �3�
The first point that catches our attention is that an equation such

as �1� does not necessarily determine f1 uniquely, a situation in
itself foreign to the Newtonian outlook. However we can afford to
ignore this point, because a much more serious difficulty con-
fronts us in a moment. We will assume therefore that f1 , f2, and f3
are uniquely determined.

Now it is a fundamental postulate of Newtonian mechanics that
when two forces act simultaneously on a particle the effect is the
same as that of a single force equal to their �vector� sum. An
equivalent form of the same postulate is that each force gives rise
to the acceleration that it would produce if the other force were
absent. Thus we must have

f3 = f1 + f2 �4�
and combining this with Eq. �3� we find

f1 + f2 = ��f1 + f2� + ��f1 + f2� �5�
Now it is easy to see that in general Eqs. �1�, �2�, and �5� are

inconsistent. Equation �1� involves only the value of � at f1, and
Eq. �2� involves only the value of � at f2, and neither involves any
reference to or any restriction on the value of � or the value of �
at f1+ f2.
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‘…Thus forces depending on the acceleration are not admis-
sible in Newtonian dynamics’”

3 Another Approach
If it were not for Pars’s proof, the possibility of using

acceleration-dependent forces in mechanics could be demon-
strated by bringing forward the following rather simple argu-
ments.

As in Pars’s proof, consider the rectilinear motion of a particle
of mass m on the line Ox, but now the particle is acted on by
forces m��x , ẋ , t ; f�x , ẋ , t�� and m��x , ẋ , t ; f�x , ẋ , t�� where � and �
are smooth functions of their arguments, and the function
f�x , ẋ , t�, in addition to the natural requirement of smoothness,
must meet one more requirement: it must be uniquely determined.

Because the forces m��x , ẋ , t ; f�x , ẋ , t� and m��x , ẋ , t ; f�x , ẋ , t��
depend only on the coordinate x, velocity ẋ and time t and do not
depend on the acceleration, Pars’s proof does not hold for this
case, and thus we are entitled, in accordance with traditional
methods of mechanics, to write the equation of motion of the
particle in the traditional form

ẍ = ��x, ẋ,t; f�x, ẋ,t�� + ��x, ẋ,t; f�x, ẋ,t�� �6�
The equations of motion of the particle under consideration

have this form regardless of the form of the function f�x , ẋ , t�.
Because of this, if f�x , ẋ , t� is the solution of the algebraic �in f�
equation

f = ��x, ẋ,t; f� + ��x, ẋ,t; f� �7�
the motion of the particle is described by Eq. �6� too.

Let Eq. �7� determine f uniquely. �Note that by the implicit
function theorem, Eq. �7� determines f = f�x , ẋ , t� uniquely if
�� /�f +�� /�f �1�.

It follows from Eqs. �6� and �7� that f�x , ẋ , t�� ẍ�x , ẋ , t�. Be-
cause of this, keeping in mind that the motion of a particle de-

pends on the values of the forces acting thereon rather than on the
notation used for these forces or their arguments, one should ac-
cept that

ẍ = ��x, ẋ,t; ẍ� + ��x, ẋ,t; ẍ� �8�

describes the motion of the particle acted on by the acceleration-
dependent forces m��x , ẋ , t ; ẍ� and m��x , ẋ , t ; ẍ�.

Thus, restricting ourselves to forces and methods traditional for
mechanics, we have unambiguously derived the equation of mo-
tion of a particle acted on by two acceleration-dependent forces.
This means that either the contradiction revealed by Pars is typical
of traditional forces and methods as well or Pars’s proof is falla-
cious.

4 Comments on Pars’s Proof
The first point that catches our attention in Pars’s proof is that

he uses two interpretations of one and the same assumption that is
sometimes called the superposition principle: “each force gives
rise to the acceleration that it would produce if the other force
were absent.” The key phrase in this assumption is “if the other
force were absent.” The results of the application of this principle
depend on how the absence of the other force is understood. Does
it mean that

�i� when “the other force” is dropped, the retained force
remains unchanged, i.e., its value �direction and mag-
nitude� remains the same as in the presence of the
dropped force �as in deriving Eq. �3��, or

�ii� when “the other force” is dropped, the retained force
takes the value it would take if the dropped force were
actually equal to zero �as in deriving Eq. �4��?

Here, we will show that the contradiction at which Pars arrived
is due to the fact that in some cases the two interpretations of the
superposition principle contradict each other, and this is true not
only for acceleration-dependent forces, but for traditional forces
as well.

Consider in more detail the difference between the two inter-
pretations of the superposition principle.

In case �i�, no account is taken of how the absence of one force
can affect the other; that is, this interpretation only implies the
following. If several forces act simultaneously on a particle, the
effect is the same as that of a single force equal to their vector
sum. In other words, it is only the current values of the forces that
are of importance, and it makes no difference whether these forces
are interdependent or not.

For example, if a particle of unit mass is acted on by two
forces, F1=−1N and F2=1N �Fig. 1�b��, then, whatever the nature
of these forces and no matter whether they may be interdependent
or not, one should proceed as follows: to find the acceleration of
the particle acted on by the force F1 alone �−1 m/s2�, then find
the acceleration of the particle acted on by the force F2 alone
�1 m/s2� and add together these accelerations to obtain the accel-
eration produced by both forces acting simultaneously �0 m/s2�.
Clearly with this approach it makes no difference at all whether
the force depends on acceleration or not.

In case �ii�, one should account for the interrelation between
these forces, i.e., account for how the presence or absence of one
force affects the other. In this case, in the example considered
above we should find out whether there is any dependence be-
tween the forces F1 and F2, e.g., whether they are related to each
other through acceleration, before writing the equation of motion
of the particle. If the forces are independent, their current values
are added together to give zero acceleration as in case �i�. If the
forces are interdependent, but this interdependence is unknown to
us, the equation of motion of the particle acted on by these forces
simultaneously cannot be written in principle. If this interdepen-

Fig. 1 Particle acted on by two forces; „a… acceleration-
dependent forces „illustration to Pars’s proof…, „b… opposing
forces equal in magnitude, „c… interrelated forces „F1+F2=1N…,
„d… particle resting on an immovable support
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dence is known, we should add together the values that each of
the forces would take if the other force were equal to zero rather
than their current values.

Let us see how the two interpretations of the superposition prin-
ciple are consistent with each other and with our empirical knowl-
edge of the behavior of mechanical systems.

Let the forces be interrelated in some way �Fig. 1�c��. If, for
example, F1+F2=1N, then, according to universally accepted
ideas, the acceleration of the particle acted on by the two forces
should be equal to 1 m/s2. We will obtain the same if we use
interpretation �i� of the superposition principle. However, if inter-
pretation �ii� is used, the acceleration will be 2 m/s2. To demon-
strate, if F1=0N, then F2=1N, and vice versa.

We may also consider the situation where only F1 affects F2
while F2 does not affect F1 �Fig. 1�d��, for example, the situation
where the particle rests on an immovable support, F1 is the gravity
force, and F2 is the supporting force. In case �i�, the acceleration
will obviously be zero as it must. In case �ii�, however, the situa-
tion is quite different. Let the supporting force be zero. Then the
acceleration imparted to the particle by the gravity force will be
−g �here, g is the acceleration of gravity�. Now let the gravity
force be zero. In the absence of the gravity force, the supporting
force is zero too. Hence, the acceleration imparted to the particle
by the supporting force �in the absence of the gravity force� will
be zero. Therefore, in this case the acceleration imparted to the
particle by the two forces will be −g. In other words, interpreta-
tion �ii� of the superposition principle implies that a particle rest-
ing on an immovable support must execute a uniformly acceler-
ated downward motion.

These examples show that in the case of interdependent forces
the two interpretations of the superposition principle result in dif-
ferent motions. In other words, for interdependent forces these
interpretations are non-equivalent and, what’s more, they conflict
with each other, this being true both for acceleration-dependent
forces and for forces that depend on time alone and even for
constant forces.

The basic fallacy in Pars’s proof is that he equates the particle
accelerations obtained from the two different interpretations of the
superposition principle �Eq. �4��, which in the case of interdepen-
dent forces yield radically different results. �The interdependence
of the forces considered by Pars �1� is obvious because the value
of each of them depends on whether it acts singly as in Eqs. �1�
and �2� or together with the other force as in Eq. �3��. On this
basis, he concludes that acceleration-dependent forces are not ad-
missible. But in just the same way, using a particle on an immov-
able support as an example, it could be concluded that the gravity
force is not admissible or Newton’s third law is not true.

In effect, the only question that could arise at this point is
whether interpretation �ii� of the superposition principle in itself is
admissible. The examples considered above show that this inter-
pretation is inconsistent with what we know from experience and
hence fallacious. Because of this, Pars’s conclusions based on this
interpretation are fallacious too, and thus they cannot be consid-
ered as the demonstration of the inadmissibility of acceleration-
dependent forces in mechanics.

At the same time, as shown in Sec. 3, the equations of motion
of a particle acted on by acceleration-dependent forces can be
obtained from the traditional approach without any additional as-
sumptions. This fact alone makes it possible to conclude that
acceleration-dependent forces are every bit as admissible in me-
chanics as forces that depend only on position, velocity, and time.
Let us consider this problem from another point of view.

5 Force as a Function of Time
According to interpretation �i� of the superposition principle,

the acceleration of a particle at every instant of time is determined
solely by the values of the forces acting thereon. In this case, it
makes no difference whether the forces depend on time explicitly
or through the mediation of other functions, for example, through

the mediation of x�t�, ẋ�t� and some function f�t�. In other words,
of importance are the values of the forces at every instant of time
rather than the algorithm by which they are calculated. Thus, for
example, if a particle of mass m is acted on by forces
m��x�t� , ẋ�t� , t ; f�t�� and m��x�t� , ẋ�t� , t ; f�t��, then, regardless of
the algorithm of calculation of the function f�t�, the equation of
motion of the particle has the form

ẍ�t� = ��x�t�, ẋ�t�,t; f�t�� + ��x�t�, ẋ�t�,t; f�t�� �9�
Note that the validity of this assertion does not depend by any

means on how f�t� is related to ẍ�t�: does not coincide at any t,
coincides at some instances of time or is identically equal thereto.
For example, if �=1/2 and �=1/2, the fact that in this case each
of the functions is formally identically equal to ẍ /2 can hardly
cast any doubt upon the validity of the equation of motion ẍ=1.

If, in one sense or another, our interest is in finding the function
f�t� that satisfies the condition f�t�� ẍ�t�, then, as follows from
Eq. �9�, it can be found from

f = ��x�t�, ẋ�t�,t; f� + ��x�t�, ẋ�t�,t; f�

or, what is the same, we can put f�t�= ẍ�t� where ẍ�t� is deter-
mined by

ẍ = ��x�t�, ẋ�t�,t; ẍ� + ��x�t�, ẋ�t�,t; ẍ� �10�
If Eq. �10� possesses a unique solution �as, for example, in the

case of Eq. �6��, then, as discussed earlier, it uniquely determines
the motion of the particle acted on by the forces m��x , ẋ , t ; ẍ� and
m��x , ẋ , t ; ẍ�.

We may also define the function f�t� otherwise, for example,
f�t��y��t� where y�t� is the solution of

ÿ = ��y, ẏ,t;y�� + ��y, ẏ,t;y�� �11�

at the initial conditions y�t0�=x�t0�, ẏ�t0�= ẋ�t0� and ÿ�t0�= ẍ�t0�.
Substitution of y��t� for f�t� in Eq. �9� yields

ẍ = ��x, ẋ,t;y��t�� + ��x, ẋ,t;y��t�� �12�

When Eq. �11� is compared with Eq. �12�, it is apparent that x
=y�t� is the unique solution of Eq. �12�, and thus x��t��y��t�
� f�t�. Substituting x��t� for f�t� in Eq. �9� and in the expressions
for the forces, we can see that

ẍ = ��x, ẋ,t;x�� + ��x, ẋ,t;x��
uniquely determines the motion of the particle acted on by the
forces m��x , ẋ , t ;x�� and m��x , ẋ , t ;y�� provided that this equation
possesses a unique solution. Naturally, in this case, in addition to
the traditional initial conditions x�t0� and ẋ�t0�, we also have to
specify ẍ�t0�.

Further generalizations are obvious. We may consider several
functions f1�t� , f2�t� , . . . , fk�t� requiring that f i�t� be identically
equal to the �i+1�th derivative x�i+1��t�. Reasoning by analogy, we
can show that in this case,

ẍ = ��x, ẋ,t; ẍ,x�, . . . ,x�k+1�� + ��x, ẋ,t; ẍ,x�, . . . ,x�k+1�� �13�
determines the motion of the particle acted on by the forces
m��x , ẋ , t ; ẍ ,x�, . . . ,x�k+1�� and m��x , ẋ , t ; ẍ ,x�, . . . ,x�k+1�� provided
that Eq. �13� possesses a unique solution at the given initial con-
ditions x�t0� , ẋ�t0� , ẍ�t0� , . . . ,x�k��t0�.

6 Conclusions
The above discussion shows that the question of whether forces

that depend on acceleration or other higher derivatives of gener-
alized coordinates are admissible in mechanics �in the sense in
which it is considered in Pars’s book, i.e., as a question that
touches on the foundations of mechanics� is far-fetched. Ulti-
mately, it is only the value of a force at every instant of time that
is of importance, no matter whether the force depends on time
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explicitly or through the mediation of other time functions, for
example, through the mediation of x�t�, ẋ�t�, ẍ�t�, x��t�, etc. If for
some reason or other it is necessary that the control action depend
on a higher derivative of a generalized coordinate or such depen-
dence is brought about by our description of an external force,
then there are no fundamental obstacles to the application of tra-
ditional methods of dynamics to such forces. The only thing that
matters is that the force in question must be uniquely determined
at every instant of time, i.e., the equation of motion must possess
a unique solution. This condition may not be satisfied in the gen-
eral case. However, this does not suggest the inadmissibility of a
particular force; this only points to the necessity of refining the

mathematical model by including “finer” factors that affect the
motion of the system under consideration or, where control ac-
tions are involved, to the fact that this force is physically unreal-
izable.
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Computer Simulation of Rapid
Granular Flow Through an Orifice
Rapid granular flow through an orifice (nozzle-shaped flow restrictor) located at the
bottom of a vertical tube has been studied using three-dimensional direct computer simu-
lation with the purpose of investigating (1) characteristics of rapid granular flows
through the flow restrictor, (2) the choking condition of rapid flow at the orifice and thus
conditions at which the maximum discharge rate takes place for the given orifice, and (3)
a functional relationship between the discharge rate and flow quantities such as granular
temperature and solid fraction. In the present simulation, where the frictional hard-
sphere collision operator was employed, it was possible to obtain both rapid and slow
(choked) flows through the orifice by controlling the number of particles in the system.
The results show that the profile of granular temperature in the vicinity of the orifice
plays an important role in determining the choking condition at the orifice. Flow appears
to be choked when an adverse granular conduction occurs locally at the orifice in the
direction opposite to the mean flow. On the other hand, flow is not choked when the
fluctuation energy is conducted in the mean flow direction near the orifice. When flow is
not choked, the discharge rate through the orifice increases with increasing solid fraction
or normal stress. Once the flow becomes choked, however, the discharge rate decreases
as the solid fraction or normal stress increases. Also for inelastic, rough particles, the
discharge rate is found to be proportional to the granular temperature to the power of 1.5
and inversely proportional to the gravitational acceleration and the tube
length. �DOI: 10.1115/1.2187529�

Introduction
In recent years research on granular flows has received consid-

erable attention due to both academic interests and their applica-
tion. In fundamental research aspects, the constitutive equations
for granular flow and its boundary conditions are of great interest.
In application aspects, transports of dry chemicals and pharma-
ceutical granules �see Khanam and Nanda �1�, for example�, han-
dling of grain and coal, flows in pebble bed nuclear reactors, and
even snow avalanches �see Manna and Herrmann �2�� demand a
better understanding of the characteristics of granular flows.

In particular, flows from hoppers and silos have drawn consid-
erable interest since hoppers have been the most common device
for the storage and discharge of granular materials. One of the
early experimental works on the prediction of the discharge rate of
mono-sized granular materials from orifices was conducted by
Beverloo et al. �3�. They proposed a correlation for the discharge
rate of solid materials through a hopper orifice as follows:

ṁ = C�g1/2�Do − kd�2.5

where � is the bulk density of granular material, g is the gravita-
tional acceleration, Do is the diameter of the orifice at the bottom
of the hopper, and d is the particle diameter. In this correlation,
two empirical parameters, C and k, need to be determined experi-
mentally. Beverloo et al. assumed � as the initial fill density of the
hopper. Consequently, the discharge coefficient C was determined
to be in a range between 0.55 and 0.65. Nedderman and Laohakul
�4� found the value of k to be approximately 1.5±0.1 for mono-
sized spherical particles. Humby et al. �5� attemped to predict
hopper discharge rates of binary granular mixtures and recognized

the importance of predicting density near the orifice in determin-
ing the discharge rate of granules through a hopper orifice. Re-
cently Grantham and Forsberg �6� investigated the flow behavior
of a powder through a silo from the displacement measurements
using Digital Speckle Radiography �DSR�. Sielamowicz et al. �7�
employed the digital particle image velocimetry �DPIV� technique
to measure velocity fields of plane hopper flows.

Potapov and Campbell �8� conducted two-dimensional com-
puter simulations of granular flows from plane hoppers. Hirshfeld
and Rapaport �9� also employed discrete-particle simulations to
examine three-dimensional granular flows from a silo. Both em-
ployed a soft-particle simulation technique which models particle
interactions as linear springs and linear dashpots. In particular, the
results of the computer simulations by Potapov and Campbell
showed that hopper flows appear to be in an intermediate regime
between quasistatic yield and rapid flow; consequently, hopper
flows may neither be modeled with plasticity theory under the
assumption that the material is always yielding, nor modeled as
rapid flows.

Most of the research on hopper flows focuses on particles
slowly flowing out of a hopper where particles are stored at high
density. These flows are far from rapid flows. However, it may be
interesting to study the transition from rapid flows to slow flows
within a system. For example, when granular materials trans-
ported in high speed encounter a reduced flow area such as an
orifice, the choking phenomenon may take place at the orifice for
sufficiently high flow rates.

The present work simulates gravitational flows of granular ma-
terials through a nozzle-shaped flow restrictor �orifice� located at
the bottom of a cylindrical tube. This paper attempts to address
the choking condition of granular flows and thus to determine
conditions for the maximum transport rate of granular materials to
take place for a given orifice size. The effects of flow restrictor
size �or orifice size�, particle diameter, pipe length, and the mag-
nitude of gravity are investigated using computer simulation. Fur-
thermore, while most studies on prediction of discharge rates from
hoppers make efforts to relate the discharge rate with the hopper
orifice diameter and density, this paper presents an alternative way
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of expressing the discharge rate as a function, not of orifice diam-
eter, but of granular temperature and solid fraction.

Simulation Method
The present work simulates gravitational granular flow through

a cylindrical tube and a nozzle-shaped flow restrictor �or orifice�
located at the bottom of a tube as shown in Fig. 1. Granular
particles start freefall under gravity at the entrance of the tube,
accelerate through the vertical tube, and exit the system through
the flow restrictor. The cross-sectional view of the flow restrictor
is also shown in Fig. 1. The shape of the flow restrictor makes it
relatively easy to calculate the collision times between particles
and the wall of the flow restrictor. Also the shape has no horizon-
tal surface. If a horizontal surface were present in the system,
some inelastic particles would sit on the surface after many colli-
sions with the solid surface �unless other particles hit the particle
away from the surface�. The current simulation method cannot
handle the situation of particles staying in constant contact with
solid walls or other particles.

As shown in the schematic, the tube length is denoted by L, and
the radii of the tube and the orifice by Rt and Ro, respectively. In
the present simulation, L was selected to be either 0.3 or 0.45 m,
and Ro varied from 6 to 12 mm. A fixed value of 20 mm is se-
lected for Rt. The dimensions of the system, such as the tube
length and diameter, were selected to be small enough to provide
a sufficiently high solid fraction for a given number of particles in
the system. Most simulations were conducted with spherical par-
ticles 3 mm in diameter, which seemed to be large compared to
the orifice size. However, the large size of the particle was neces-
sary to obtain a high solid fraction for a given number of particles
in the system. On the other hand, several simulations were con-
ducted with 2-mm particles to investigate the effect of the particle
diameter on flows through the orifice. The density of the particles
was assumed to be 2500 kg/m3 to calculate normal stresses and
mass flow rates.

The current simulation employed the frictional hard-sphere col-
lision operator described in Walton �10�. Consider two identical
spheres of d in diameter with centers located at ra and rb, travel-
ing with velocities �a and �b and rotational velocities �a and �b.
Then the unit vector from sphere a to b at contact, the relative

velocity, the normal and tangential direction relative velocities,
and the relative surface velocity before collision are given by

rab = �rb − ra�/d

�ab = �b − �a

�n = ��ab · rab�rab

�t = �ab − �n

�s = �t +
d

2
rab Ã ��a + �b�

The resulting changes in normal, tangential and rotational veloci-
ties for each sphere after collision are given by

��na = − ��nb = 1
2 �1 + e��n

��ta = − ��tb =
K�1 + ��
2�K + 1�

�s

��a = ��b =
�1 + ��

d�K + 1�
rab � �s

where K is the square of the ratio of the radius of gyration to the
radius of the sphere �K=0.4 for the sphere�.

The coefficient of rotational restitution, �, is defined by the
ratio of the relative surface velocity of two objects at the post-
collision to that at the pre-collision. For a perfectly smooth sur-
face, its value is −1, while a perfectly rough surface has the value
of 1. In the present work, as described in Walton �10�, the coeffi-
cient of rotational restitution is not constant but varies, depending
on the conditions of the impact, that is, whether a particle slides or
rolls at contact. The predetermined �constant� maximum coeffi-
cient of rotational restitution was chosen to be 0.0 and the friction
coefficient 0.4 was used in the present study.

The coefficient of restitution both between two particles and
between particles and the wall of the flow restrictor, e, was set as
a constant value of 0.95. The value of 0.95 was chosen for two
reasons: One reason was that a high value for the coefficient of
restitution is desired to avoid situations in which particles slide
down the wall surface of the restrictor while in constant contact
with the wall. Another reason was to allow comparison with fu-
ture experimental work with glass beads. Lun and Savage �11�
show that the coefficient of restitution for glass beads is about
0.95 for impact velocity of 1 to 2 m/s. In the present simulation
with a vertical tube 0.3 m in length, the maximum impact velocity
is approximately 2 m/s; on the other hand, very low impact ve-
locity is also present in the simulation, in which case the coeffi-
cient of restitution should be close to 1.0. Though most cases were
run with the value of 0.95, several cases were also run with dif-
ferent values of the coefficient of restitution.

On the other hand, the coefficient of restitution between the
tube wall and particles was selected to be 1.0. For low coefficients
of restitution, some cases were observed where particles were
falling down swirling along the cylindrical tube wall while in
constant contact with the wall. The value of 1.0 for the coefficient
of restitution eliminated those cases where particles are in con-
stant contact with the side wall.

Computation procedures are as follows: Initially particles are
randomly positioned in the tube. A statistically steady flow is
achieved by recycling particles to the top of the tube after they are
discharged from the orifice at the bottom. The particles enter the
tube with an initial velocity �which was selected as 0.2 m/s in the
present work�, being uniformly distributed over the cross section
of the tube. Convergence to a steady state was usually achieved
within 0.5 s, which is about twice the time required for freefall
through the tube 0.3 m in height. Also all the particles initially
placed in the system are usually discharged from the system

Fig. 1 Schematic of gravitational flow through the flow
restrictor
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within the first 0.5 s. The system was simulated up to 2–30 s,
depending on the number of particles in the system. The simula-
tion time was selected such that the total number of collisions and
the number of particles having been discharged from the orifice
are high enough to ensure reasonable average processes. All col-
lision times among particles and between particles and walls were
initially calculated and stored. After the initial calculation, colli-
sion times were calculated only for particles that have just col-
lided with other particles or walls. Careful programming was re-
quired to calculate collision times between particles and the wall
of the flow restrictor. �Since the flow restrictor has the cross-
sectional shape of a quadrant of a circle, there are a maximum of
four possible roots for collision time between a particle and the
wall. The least positive root is the desired collision time.�

The total number of particles in the system was selected from
100 to 2500 in the present study. The CPU time for each simula-
tion varied from 1 min to 1 week using a personal computer
equipped with 3.0 GHz Pentium IV, depending mainly on the
number of particles in the system and the orifice size for the given
tube dimensions and the particle diameter.

Simulation calculated solid fraction, three mean velocities �two
of which should be zero�, three components of fluctuational ve-
locities, three components of mean rotational velocities �all of
which should be zero� and their fluctuations. All these flow quan-
tities were averaged over the cross-sectional area of the tube, and
thus were measured as functions of the distance from the exit
along the tube with the resolution of a tenth of the particle diam-
eter. Mass flow rate or discharge rate from the orifice was also
measured. Only a normal stress component exerted on the orifice
was calculated in the present work. One of the highest collision
frequencies averaged over the total simulation time �usually 2 s�
was observed to be 0.4 �s.

Characteristics of Flows Through the Flow Restrictor
Characteristics of rapid granular flows through the flow restric-

tor shown in Fig. 1 were studied with 3-mm particles. Figures 2–4
show the simulation results with a vertical tube 0.3 m in length
and 20 mm in radius and with an orifice 10 mm in radius. The
vertical coordinate from the exit, z, was nondimensionalized by
the particle diameter, d. The location of the beginning of the flow
restrictor �the orifice� is denoted by zo as shown in Fig. 1. With the
sizes of the tube, the orifice and the particle in mind, therefore, it

is noted that the flow restrictor starts at zo /d=3.3 and ends at
z /d=0 �at which particles completely exit the system�.

The case of the simulation with 2000 particles is presented in
Fig. 2. Solid fraction, mean velocity, and granular temperature
which are averaged over the cross-sectional area of the tube are
plotted as a function of the nondimensionalized vertical coordi-
nate. In this study, the granular temperature is defined as the sum
of mean-squares of three fluctuational velocities and three fluctua-
tional rotational velocities times the moment of inertia divided by
the particle mass. Particles start freefall in acceleration from z /d
=100 �at which the entrance of the tube is located�.

The increase of granular temperature near z /d=17 indicates
that particles start to collide with one another near that location,
resulting in the increase of solid fraction and the decrease of mean
velocity. The maximum of the granular temperature is observed
near z /d=13. Note that the granular temperature is very low in the
regions above z /d=18 and below z /d=6.

The profile of solid fraction shows that the solid fraction is low
before collisions become frequent and that the solid fraction in-
creases rapidly as particles crowd the region upstream of the flow
restrictor. In that region, particles are piled up to a thickness of
about five particle diameters, the mean solid fraction being about
0.56. It is apparent, therefore, that the flow is choked at the flow
restrictor. Several layers of the microstructure of particles up-
stream of the flow restrictor are also observed as particles form
layers near a solid boundary �in this case, the wall of the flow
restrictor�. The layered microstructure has been observed in other
literature as well �see Ahn et al. �12�, for example�. Due to this
microstructure, it was difficult to define the value of the solid
fraction just upstream of the flow restrictor. The solid fraction
immediately upstream of the flow restrictor was, therefore, de-
fined by the solid fraction averaged over the distance of one di-
ameter immediately upstream from the flow restrictor. This aver-
age value for the solid fraction was used for various plots in the
following sections.

The profile of mean velocity is also plotted in Fig. 2. The mean
velocity increases as particles accelerate under gravity, and then
decreases as particles start to collide with one another near z /d
=17. Note that the mean velocity decreases rapidly between z /d
=17 and 8 where the granular temperature is shown high. This
indicates that the kinetic energy of particles in the mean velocity
is converted into the fluctuational energy represented by the

Fig. 2 Case of 2000 particles in the system with an orifice 10 mm in radius. The location of zo /d=3.3 is also shown with a
dashed line.
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granular temperature �and some of the kinetic energy is dissipated
due to inelastic collision and friction�. The minimum of the mean
velocity is observed immediately upstream of the flow restrictor
�at z /d=3.3�, after which the mean velocity increases as particles
exit the flow restrictor in acceleration. It is interesting to note that
the mean velocity upstream of the flow restrictor is nearly con-
stant over the distance of several particle diameters for the case of
the choked flow.

The case of 1600 particles is shown in Fig. 3. This is the case
where the discharge rate for the orifice size of 10 mm in radius is
the maximum. �This will be discussed more in the next section.�
The mean solid fraction just upstream of the flow restrictor is
about 0.42. Just as in Fig. 2, the microstructure of a few layers of
particles is also observed in the plot of solid fraction against the
normalized vertical coordinate. The profile of the mean velocity

shares characteristics similar to those in Fig. 2. The mean velocity
decreases as collisions become frequent, reaches a minimum just
upstream of the flow restrictor, and increases again as particles
exit in acceleration through the flow restrictor. The location of the
maximum granular temperature is at z /d=10 which is lower than
that of the case in Fig. 2. Also the granular temperature just up-
stream of the flow restrictor does not appear to be as low as shown
in Fig. 2, but is nearly zero above z /d=15.

The simulation result with 500 particles is shown in Fig. 4. One
distinct difference between this case in Fig. 4 and cases in Figs. 2
and 3 is that the collision rate is low in this case due to a small
number of particles in the system compared to the previous cases.
Therefore, particles can bounce up high from the flow restrictor
wall without collision with other particles. As a result, the magni-

Fig. 3 Case of 1600 particles in the system with an orifice 10 mm in radius. The location of zo /d=3.3 is also shown with a
dashed line.

Fig. 4 Case of 500 particles in the system with an orifice 10 mm in radius. The location of zo /d=3.3 is also shown with a
dashed line.
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tude of granular temperature even at z /d=20 is not negligible.
Even near the wall of the flow restrictor, the collision rate among
particles is low and granular temperature does not decrease
quickly, compared to the other cases. The mean solid fraction just
upstream of the flow restrictor is about 0.12. The mean velocity
reaches a minimum just upstream of the flow restrictor just as in
the other cases.

Preliminary Investigation on Choking Condition
The discharge rate from the orifice is presented as a function of

the mean solid fraction just upstream of the orifice in Fig. 5. As
mentioned in the previous section, the mean solid fraction is ob-
tained by averaging solid fraction over the distance of one particle
diameter immediately upstream from the flow restrictor. Several
sizes of orifices were examined with 3-mm particles. For a given
orifice, the discharge rate is almost linear with the solid fraction
for the region of low solid fraction as shown in Fig. 5. As the solid
fraction increases further, the discharge rate reaches a maximum.
After the maximum discharge rate is achieved, however, the dis-
charge rate decreases as the solid fraction increases. It is probably
because particles at high solid fraction become locked with each
other. Note the rapid decrease of the discharge rate in the cases
with orifice sizes 10 mm and 11 mm in radius as the solid fraction
approaches its maximum shear limit �about 0.6�. Therefore, it ap-
pears that the choking situation starts to take place at the maxi-
mum discharge rate. Though it is difficult to determine the exact
solid fraction at which choking takes place, the maximum dis-
charge rate is observed at a solid fraction of 0.3 to 0.5, depending
on the orifice size. When the orifice size is smaller, choking takes
place at a lower solid fraction.

The discharge rate from the orifice is examined as a function of
the normal stress exerted on the orifice in Fig. 6. For low normal
stress, the discharge rate is a function only of normal stress, inde-
pendent of the orifice size as shown in Fig. 6. All the data from
different orifice sizes fall into a single line for low normal stress.
But as normal stress increases, the discharge rate is not a function
only of the normal stress but also of the orifice size. For a smaller
orifice size, the data deviate from the single line at a lower normal
stress. For a given orifice, as the normal stress increases, the dis-
charge rate increases, reaches a maximum, and then decreases.
Examine, for example, the case of the orifice 10 mm in radius.
The discharge rate is almost linear with the normal stress until the
normal stress is about 300 N/m2. After 300 N/m2, the discharge

rate is still increasing but in a fashion deviating from the single
line. Then it reaches a maximum at 470 N/m2 after which the
discharge rate decreases with further increase of the normal stress.
This may be explained as follows: At approximately 300 N/m2,
particle collisions start locking particles to one another and thus
preventing particles from being freely discharged from the orifice.
Nevertheless, a higher normal stress pushes particles out of the
exit in a stronger manner, resulting in a higher discharge rate.
However, further increase in normal stress starts locking particles
more severely, resulting in the decrease of the discharge rate.

The discharge rates calculated by the present simulation as
shown in Fig. 6 were compared with the correlation by Beverloo
et al. �3�. The discharge rates predicted by Beverloo et al. were
lower than the simulation results by approximately 50%. The
cause of the discrepancy remains to be investigated.

The present work attempts to investigate the conditions at
which the maximum discharge rate occurs. The profiles of granu-
lar temperature are plotted in Fig. 7 as a function of the non-
dimensionalized distance from the exit for cases with different
numbers of particles in the system with an orifice 10 mm in ra-
dius. Though not clear from Figs. 5 and 6, the maximum dis-
charge rate for the orifice 10 mm in radius occurred when the
number of particles in the system was 1600. As the number of
particles in the system increased up to 1600, the discharge rate
increased. However, further increase of the number of particles in
the system resulted in the decrease of the discharge rate.

A detailed observation of the profiles of granular temperature is
presented in Fig. 7. It is noted that the converging section of the
flow restrictor starts at z /d=3.3 and the exit is located at z /d=0.
The cases of 1400 and 1500 particles in the system show that the
granular temperature monotonically decreases as particles move
toward the exit. That is, granular temperature upstream of the flow
restrictor is higher than that at the converging section of the flow
restrictor. This shows that granular conduction occurs in the mean
flow direction for these cases. Granular flows for these cases were
not observed to be choked.

On the other hand, the cases of 1700, 1800, 1900, and 2000
particles show that granular temperature decreases in a flow direc-
tion, reaches a minimum at a location somewhere upstream of the
flow restrictor, and then increases at the converging section of the
flow restrictor before decreasing again at the exit. For these cases,
therefore, initially granular conduction occurs in the bulk in the
same direction with the mean flow. But as particles move near the
flow restrictor, fluctuational energy is conducted backward from

Fig. 5 Discharge rate from the orifice against the mean solid
fraction upstream of the orifice for various orifice sizes

Fig. 6 Discharge rate from the orifice against the normal
stress exerted on the orifice for various orifice sizes
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the converging section of the flow restrictors to the bulk against
the mean flow direction. That is, there is a local adverse granular
conduction �though small in magnitude� at the vicinity of the ori-
fice in the direction opposite to the mean flow. In these cases,
flows were observed to be choked.

The case of 1600 particles, which yielded the maximum dis-
charge rate, shows that there is no local granular conduction im-
mediately upstream of the flow restrictor �at z /d=3.3 to 3.5�.
Therefore, it may be concluded from the above observation that
the maximum discharge rate occurs when no local granular con-
duction occurs upstream of an orifice. When an adverse granular
conduction locally exists against the mean flow direction, dis-
charge rate decreases and flow becomes choked. On the other
hand, when granular temperature is monotonically conducted
from the bulk to the exit, flow is not choked and discharge rate
increases as the solid fraction and normal stress increase as shown
in Figs. 5 and 6.

It is interesting to examine some details in the profiles of the
solid fraction from Figs. 2–4 in conjunction with the granular
temperature profiles. The case of Fig. 2 represents a flow that is
choked at the flow restrictor. It is noted that the mean solid frac-
tion just upstream of the flow restrictor is about 0.56, which is
higher than the maximum solid fraction �about 0.51� in the con-
verging section of the flow restrictor �from z /d=3.3 to 0�. On the
other hand, Fig. 3 shows the case where the discharge rate is the
maximum for the given orifice size. In this case, the mean solid
fraction just upstream of the flow restrictor is about 0.42, which is
essentially equal to the maximum solid fraction in the converging
section of the flow restrictor. Finally, the case in which flow is not
choked is shown in Fig. 4. The mean solid fraction upstream of
the flow restrictor is 0.12, which is less than the maximum solid
fraction �about 0.13� in the converging section of the flow restric-
tor. In general, the solid fraction is low in a region where granular
temperature is high. Therefore, the fact that the solid fraction in
the converging section is higher than that immediately upstream
of the flow restrictor in Fig. 4 may indicate that the granular
temperature at the converging section is lower than it is upstream
of the flow restrictor. Similarly, it may be said for the case of Fig.
2 that the lower solid fraction in the converging section implies
the granular temperature at the converging section is higher than
immediately upstream of the flow restrictor, thus yielding an ad-
verse granular conduction.

The choking of a granular flow, similar to conventional fluid
flows, should occur when the wave speed of the granular material
in motion exceeds the mean velocity of the flow. The wave speed
through a granular material in motion is expected to be a function
of the solid fraction and granular temperature. The wave speed
must increase as the solid fraction and granular temperature in-
crease. However, the propagation mechanism of pressure waves in
granular materials appears very complicated �see Hostler and
Brennen �13��. We still do not fully understand wave propagation
in granular flows to describe the choking condition in terms of the
wave propagation speed. As shown in Figs. 5 and 6, therefore, this
paper attempted to examine the choking condition in terms of the
mass flow rate instead of the wave speed. It has been shown that
the choking phenomenon takes place when the mass flow rate
reaches a maximum. In addition, the result shown in Fig. 7 im-
plies that the maximum flow rate takes place when no local granu-
lar conduction exists just upstream of the orifice, and thus that
choking takes place when an adverse granular conduction just
appears upstream of the orifice. Further investigation on the chok-
ing condition of granular flows remains to be done.

Mass Flow Rate as a Function of Flow Quantities
Almost all research on the discharge rate through a hopper ori-

fice relates the discharge rate as a function of the orifice size, as in
Beverloo et al. �3�. Figures 5 and 6 also show the discharge rate as
a function of the orifice size and solid fraction or normal stress.
However, it may be desired to establish a universal representation
of the discharge rate, which does not include the orifice size. The
present study attempts to relate the discharge rate with flow quan-
tities such as the granular temperature and solid fraction. There
has been some work to obtain the granular temperature for granu-
lar flow out of a hopper. For example, Hirshfeld and Rapaport �9�
calculated the distribution of kinetic energy in the flow from a silo
�through an orifice�. But they did not relate the kinetic energy to
the flow rate. The current work may be the first attempt to relate
the discharge rate to flow quantities instead of orifice size.

The rheological behavior of granular flows is briefly examined
in the current study. Figure 8 shows the normal stress normalized
by �pT against the solid fraction which is the average value over
the distance of one particle diameter upstream from the flow re-
strictor. The density of the particle is denoted as �p. Recall that the
coefficient of restitution of 0.95 and the Coulomb friction coeffi-

Fig. 7 Profiles of granular temperature as a function of the
distance from the exit for cases with different numbers of par-
ticles in the system with an orifice 10 mm in radius. The loca-
tion of zo /d=3.3 is also shown with a dashed line.

Fig. 8 Non-dimensionalized normal stress versus solid frac-
tion for the case of ep=0.95. Data from the current simulation
results are compared with the result of Lun et al. †14‡.
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cient of 0.4 and the predetermined maximum coefficient of rota-
tional restitution of 0.0 were used for each data point. All data are
well correlated with a single curve regardless of various orifice
sizes employed in the plot. Also the theoretical prediction by Lun
et al. �14� for the case of ep=0.95 is plotted in Fig. 8. There is
good agreement between the current simulation results and those
of Lun et al.

In order to propose an expression for the discharge rate which is
independent of the orifice size, we limit ourselves to flows with
inelastic, rough particles. In the current simulation setup, particles
falling from the top of the tube will have enough collisions with
other particles and also with walls that most of the initial potential
energy of the particles at the entrance of the tube will be dissi-
pated before the particles discharge through the orifice. However,
the dissipation rate is known to be proportional to T3/2 �see Lun et
al. �14�, for example�. Therefore, we may relate the initial poten-
tial energy flux to the dissipation rate as follows:

ṁgL � T3/2

Thus the non-dimensionalized discharge rate is proposed to be

ṁgL

�pT3/2A
= f��,e,�,��

where A is the cross-sectional area of the tube, T is the granular
temperature just upstream of the orifice, and f is a function of the
solid fraction ���, coefficient of restitution �e�, friction coefficient
���, and coefficient of rotational restitution ���. Noting that ṁ

=�p�AV̄ where V̄ is the mean velocity over the cross-sectional
area of the tube, the mean velocity may be related to the granular
temperature as follows:

V̄ =
T3/2

gL
h��,e,�,��

where h is a function equal to f /�.
The non-dimensionalized discharge rate as proposed above is

plotted against the solid fraction in Fig. 9 for various orifice sizes.
All data from the present simulation are remarkably correlated to
a single curve, independent of the orifice size. This confirms that
the dissipation rate is indeed proportional to the granular tempera-
ture to the power of 1.5. Also our basic assumption is valid that
most of the initial potential energy flux at the entrance of the tube
is dissipated before particles discharge through the orifice.

The effects of the gravitational acceleration and the tube length
were also investigated as shown in Fig. 10. In these runs, the
gravitational acceleration was selected as either g=9.81 or
4.91 m/s2 and the tube length as either L=0.3 or 0.45 m. As
shown in Fig. 10, all data with different values of the gravitational
acceleration and the tube length are well correlated, thus confirm-
ing the proposed non-dimensionalization for the discharge rate.

It is tempting to non-dimensionalize the discharge rate by the
particle diameter instead of the tube length L. However, several
simulation results �though not included here� showed that the dis-
charge rate is independent of the particle diameter, but rather de-
pends on the vertical tube length as proposed above.

It should be recalled that the proposed non-dimensionalized dis-
charge rate should be a function of several parameters such as the
coefficient of restitution, the coefficient of rotational restitution
and the friction coefficient as well as solid fraction. Though not
included here, several runs with different values of the coefficient
of restitution or of the friction coefficient do not correlate with the
single curve in Fig. 9, as expected. For a lower coefficient of
restitution, the discharge rate was higher than the case for a higher
coefficient of restitution. Therefore, it seems that a system of par-
ticles with more dissipation has a higher discharge rate. More
extensive study is necessary to investigate the effects of those
parameters. In particular, the proposed non-dimensionalization for
the discharge rate assumes the particles to be inelastic and rough
�or frictional�. Consequently the initial potential energy flux of
particles at the entrance of the tube is assumed to be mostly dis-
sipated before they are discharged through an orifice. Therefore,
the proposed non-dimensionalization may not work for highly
elastic and smooth particles.

It should also be noted that the current simulation used the
coefficient of restitution of 0.95, which is highly elastic. Never-
theless, it was observed that the Coulomb friction coefficient of
0.4 and the pre-determined maximum coefficient of rotational res-
titution of 0.0 in the current study rendered significant dissipation
in the control volume. Therefore, it appears that the dissipation
due to collisions in tangential direction is as significant as the
dissipation due to collisions in normal direction.

Conclusion
The present work simulates gravitational flows of granular ma-

terials through a nozzle-shaped flow restrictor �orifice� located at

Fig. 9 The non-dimensionalized discharge rate against solid
fraction for various orifice sizes Fig. 10 Non-dimensionalized discharge rate as a function of

solid fraction with various values for the gravitational accelera-
tion and tube lengths

Journal of Applied Mechanics JANUARY 2007, Vol. 74 / 117

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the bottom of a cylindrical tube. In the present simulation setup,
particles discharged from the orifice again enter the system at the
top of the tube. By controlling the number of particles in the
system, therefore, it was possible to obtain both rapid and slow
�choked� flows through the orifice. The slow, choked flow had a
region of dense particles to a thickness of about five particle di-
ameters upstream of the orifice and might not be considered as a
typical hopper flow �whose normal stress near the orifice is much
larger than that of the current simulation due to particles being
piled up to the height of hundreds or thousands of particle diam-
eters in the hopper�. Nevertheless, it was very encouraging that
the rapid flow model employed in the current simulation could
create slow flows with the local solid fraction of up to 0.6 near the
orifice.

When flow is not choked, the discharge rate through the orifice
increases with increasing solid fraction and normal stress. But
once the flow becomes choked, the discharge rate decreases as
solid fraction and normal stress increase. Thus the maximum dis-
charge rate takes place when the flow starts choking. When the
orifice size is small, the choking takes place at lower solid fraction
and normal stress.

The profiles of granular temperature in the vicinity of the orifice
were carefully examined to determine the choking condition at the
orifice. Flow appears to be choked when an adverse granular con-
duction occurs locally at the orifice in the direction opposite to the
mean flow. On the other hand, flow is not choked when the fluc-
tuation energy is conducted in the mean flow direction near the
orifice. Therefore, the maximum discharge rate takes place when
no local granular conduction exists immediately upstream of the
orifice.

This paper also presents an alternative way of expressing the
discharge rate as a function, not of orifice diameter, but of granu-
lar temperature and solid fraction. For inelastic, rough particles,
the discharge rate is found to be proportional to the granular tem-
perature to the power of 1.5. This is because the initial potential
energy flux at the entrance of the tube should dissipate with the
granular temperature to the power of 1.5. The discharge rate is
also a function of the solid fraction, inversely proportional to the

gravitational acceleration and the height of the tube �which repre-
sent the initial potential energy of particles at the entrance of the
tube�. Since the dissipation rate depends on several parameters
such as the coefficient of restitution, the coefficient of rotational
restitution, and the friction coefficient, a different set of the cor-
relation of the non-dimensionalized discharge rate versus the solid
fraction is expected for a different set of parameters �as indicated
in several simulation runs that are not included here�.
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Analysis of Wave Propagation in
Beams With Transverse and
Lateral Cracks Using a Weakly
Formulated Spectral Method
In this paper, a novel numerical technique based on the global-local hybrid spectral
element (HSE) method is proposed to study wave propagation in beams containing dam-
ages in the form of transverse and lateral cracks. The ordinary spectral element method
is employed to model the exterior or far field regions, while a new type of element (HSE)
is constructed to model the interior region containing damages. To develop this efficient
new element for the damaged area, first, the flexural and the shear wave numbers are
explicitly determined using the first-order shear deformation theory. These wave modes,
in one of the two mutually orthogonal directions for two-dimensional transient elastody-
namics, are then used to enrich the Lagrangian interpolation functions in context of
displacement-based finite element. The equilibrium equation is then derived through the
weak form in the frequency domain. Frequency-dependent stiffness and mass matrices
can be accurately formed in this manner with a coarse discretization. The proposed
method takes the advantage of using (i) a strong form for one-dimensional wave propa-
gation and also (ii) a weak form by which a complex geometry can be discretized.
Numerical verification is carried out to illustrate the effectiveness of the method. Finally,
this method is employed to investigate the behaviors of wave propagation in beams
containing various types of damages, such as multiple transverse cracks and lateral
cracks. �DOI: 10.1115/1.2188015�

1 Introduction
In order to improve the safety, reliability, and operational life, it

is an urgent task to monitor the integrity of structures. Therefore,
the availability of efficient techniques for nondestructive damage
detection is essential. To reduce the human interaction, while
monitoring the integrity of structures, many works have been pub-
lished based on the traditional modal analysis techniques �1–3�.
These low-frequency techniques employ the information related
to the changes in the modal signature due to the presence of a
comparatively large size of damages. On the other hand, it is quite
difficult to detect the small and local defects using the traditional
modal analyses, since the effects of small damages on the low-
frequency global responses are often impossible to amplify. Diag-
nosis of small cracks is necessary because under certain loading
conditions they can grow rapidly and may lead to catastrophic
failure of the structure before any precautionary measure can be
taken. In the recent years, various new and efficient techniques
have appeared using the high-frequency characteristics provided
by smart materials, such as piezoelectrics. These approaches em-
ploy the high-frequency dynamic responses, such as Lamb wave
propagation, to monitor the presence of small defects. A lot of
works have mainly been concentrated on the experimental inves-
tigations �4–6�. Some novel theoretical studies have also been
performed. For instance, Karim et al. �7� studied the Lamb wave
scattering from cracks and inclusions in a plate due to a vertical
Gaussian beam load using a hybrid finite element method �FEM�

and normal function expansion method. Mal and Chang �8� inves-
tigated the scattering of Lamb waves from rivet holes and cracks
in plates by using hybrid frequency domain FEM and normal
mode expansion �called global-local FEM technique� followed by
inverse fast Fourier transformation �FFT� to obtain the scattered
field in time domain. Moreover, some recent researches �9–12� are
focused on the improvement of the spectral element method for
cracks and delaminations in beam structures. The spectral element
method utilizes the exact solution to the strong form of the elas-
todynamics for finite element interpolation at discrete frequencies.
Computationally, it is a very efficient and powerful method for
analyzing the high-frequency responses.

In this paper, the authors propose a new hybrid spectral method
based on the weak formulation of the finite two-dimensional �2D�
transient elastodynamic problem. Two different types of interpo-
lation bases are used in two orthogonal directions: �i� the super-
posed harmonic wave-type solution using wave vector �k� from
an assumed kinematic theory �e.g., first-order shear deformation
theory for the present beam problem�, and �ii� Lagrange family of
interpolation. While dealing with the wave propagation problem
in complex geometry, the above description of displacement field
has definite advantage over the exact spectral interpolation. As a
consequence of the hybrid interpolation using �i� and �ii�, a weak
formulation of the boundary value problem becomes necessary.
Therefore, we employ a frequency-domain variational approach
and derive the frequency-dependent dynamic stiffness matrix, the
mass matrix, and the consistent load vector. Transverse and hori-
zontal cracks are modeled as interelement discontinuity. Ordinary
spectral elements are used to model the “exterior regions” or far
field regions. An appropriate number of hybrid spectral elements
�HSEs� is used for modeling the region having cracks, i.e., the
“interior region.” Displacement continuity and equilibrium of
forces between the “interior region” and “exterior region” are
modeled using the global-local approach �7,8�. Numerical ex-
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amples are shown to demonstrate the effectiveness of the HSEs
and to study the behavior of wave propagation in the cracked
beams.

2 Field Interpolation

2.1 Solution to One-Dimensional Wave Dispersion. In this
section, the authors give a brief outline of the steps involved in
obtaining the spectral family of interpolation functions by solving
the characteristic system in terms of the wave number �k�. These
functions are then used to interpolate the displacements along the
longitudinal direction �x� of the beam �see Fig. 1�. In this paper,
while arriving at the wave dispersion model, the authors apply
first-order shear deformation theory �FSDT� for the beam consid-
ered as an equivalent single layer. The formulations given in Ma-
hapatra and Gopalakrishnan �9� are employed.

First, the beam cross-sectional stiffness and inertial coefficients
are defined as follows �9�:

�Akl,Bkl,Dkl� = �
i
�

zi

zi+1

Q̄kl
i �1,z,z2�bwdz �1a�

�I0,I1,I2� = �
i
�

zi

zi+1

��1,z,z2�bwdz �1b�

where z is the thickness coordinate perpendicular to the beam
reference plane, bw the width of the beam, � the mass density, and

Q̄kl
i the elastic constitutive tensor of the ith layer. In addition, the

following parameters are introduced

ka =
�m

ca
, kb =

�m

cb
, kr =

�m

cs
�2a�

ca =�A11

I0
, cb =�4 D11�m

2

I0
, cs =�A55

I0
�2b�

r =� B11
2

�A11D11�
, s1 = �m� I2

A55
, s2 =� I1

2

�I0I2�
�2c�

For the coupled axial-flexural-shear deformation, without the
thickness contractional modes, the wave numbers �kj� associated
with the individual wave modes at frequency �m are determined
by solving the following equation:

� �kj
2 − ka

2� 0 	 s1s2ka
2

kr
−

rkakj
2

kr
2 


0 �kj
2 − kr

2� − ikj

	 rkr
2kj

2

kakb
2 − s1s2kr
 − ikj 	s1

2 − 1 −
kr

2kj
2

kb
4 
 � = 0 �3�

The characteristic system given by Eq. �3� can be expressed as
follows:

akj
6 + bkj

4 + ckj
2 + d = 0 �4�

where

a = 1 − r2 �5a�

b =
2rs1s2kakb

2

kr
− �1 − r2�kr

2 −
s1

2kb
4

kr
2 − ka

2 �5b�

c = ka
2kr

2 − 2rs1s2kakrkb
2 − �1 − s1

2�kb
4 +

s1
2�1 − s2

2�ka
2kb

4

kr
2 �5c�

d = �1 − s1
2�1 − s2

2��ka
2kb

4 �5d�
The six roots of Eq. �4� are given by

k1,2 = ±��3 −
q

2
+�	q

2

2

+ 	 p

2

3

+�3 −
q

2
−�	q

2

2

+ 	 p

2

3

−
b

3a
�6a�

k3,4 = ±��2�3 −
q

2
+�	q

2

2

+ 	 p

2

3

+ �1�3 −
q

2
−�	q

2

2

+ 	 p

2

3

−
b

3a
�6b�

k5,6 = ±��1�3 −
q

2
+�	q

2

2

+ 	 p

2

3

+ �2�3 −
q

2
−�	q

2

2

+ 	 p

2

3

−
b

3a
�6c�

where

p =
�27ca2 − 9ab2�

27a3 , q =
�27da2 − 9abc + 2b2�

27a3 �7a�

�1 =
− 1 + i�3

2
, �2 =

− 1 − i�3

2
�7b�

The three pairs of wave numbers in Eqs. �6a�–�6c� are distinct
�except at few frequencies where cross-over may occur�, since
they represent the axial, the flexural and the shear modes, respec-

Fig. 1 Schematic diagram of the problem geometry
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tively. The axial mode must strictly have real wave numbers. The
reason can be explained as follows: first, assume that the wave
numbers for axial modes are complex. Then they should exist in
conjugate form, i.e., k1=a+ ib, k2=a− ib. Since the bulk wave
equations are of second order, even when they are coupled with
flexural waves, they propagate with forward and backward wave
components. Hence, the associated wave vector, whose amplitude
is the wave number, must have an opposite sign. The real part of
the wave number must have an opposite sign �the imaginary part
is attenuation�. Therefore, one must have Re�k1�=Re�a+ ib�,
Re�k2�=Re�a− ib�=−Re�k1�=−Re�a+ ib�. The last equation is a
contradiction. Consequently, the assumption that the bulk wave-
numbers are complex is not true.

Depending on the material configuration and geometry, the
other modes may have complex wave numbers. Note that the
shear mode starts propagating only after the following cutoff
frequency �9�:

�cutoff =� A55

I2�1 − s2
2�

�8�

When �m��cutoff, the shear waves are evanescent in nature. Usu-
ally, if there are unsymmetric damages in beams, the components
in the reflected waves contain the axial wave mode. However, in
this paper, the authors deal with the damages, which are only
symmetric with respect to the middle plane of the beam,
i.e., where only the flexural and the shear waves need to be
considered.

2.2 Enriched Interpolation of Displacement Field. After
transforming the longitudinal displacement u�x ,y , t� and the trans-
verse displacement v�x ,y , t� �see Fig. 1� from the time domain to
the frequency-domain, their frequency domain counterpart are ex-
panded as linear combination of orthogonal basis functions. The
bases for interpolation parallel to the x-axis are the four wave
modes �i , i=1,2 ,3 ,4 �the forward and the backward propagating
flexural wave modes, and the forward or the backward
propagating/evanescent shear wave modes�. The bases for inter-
polation parallel to the y-axis are the Lagrangian family of inter-
polation functions. Thus, the displacement components of u and v
in the frequency domain are expressed as

ūm�x,y,�m� = �
j=1

n

�
l=1

NW

Nj�x,y��l�x�Aj
l �9a�

v̄m�x,y,�m� = �
j=1

n

�
l=1

NW

Nj�x,y��l�x�Bj
l �9b�

where Aj
l and Bj

l are the boundary dependent coefficients for each
of the wave modes l=1, . . . ,4. n is the number of elemental
nodes, NW is the number of used wave numbers �k1, k2, k3, and
k4�, and Nj is the standard FE Lagrangian interpolation functions,
i.e., the “old shape functions.” In other words, �l are the spectral
enrichment functions over Nj. For the present beam problem, they
are described as

�1 = e−i�k1�x−xL��, �2 = ei�k2�xU−x�� �10a�

�3 = ei�k3�x−xL��, �4 = e−i�k4�xU−x�� ∀ � � �cutoff �10b�

�3 = e−i�k3�x−xL��, �4 = ei�k4�xU−x�� ∀ � � �cutoff �10c�

where k1 and k2 are the wave numbers of flexural waves, which
are positive real, and negative real numbers, respectively. k3 and
k4 are wave numbers of shear wave, which are positive imaginary
and negative imaginary numbers when the frequencies are smaller
than �cutoff. xL and xU denote the x coordinates of the left and right
cross-sections of the interior region, respectively, as shown in Fig.
1. Generally, it is convenient to define them in the local coordinate

system.
The enrichment functions �l in Eqs. �10� occur in pairs, where

one member of the pair is the “mirror image” of the other. In fact,
the origin of this idea for the displacement field in Eqs. �9� can be
traced to recent work for solving Helmholtz equations �13,14�,
where at each of the FE nodes, the potential is expanded into one
or multiple discrete series of plane waves. However, no work has
been reported for elastic waves in bounded media.

To prevent transverse shear locking while applying FSDT, the
order of approximation has to be at least quadratic along the
y-axis. Therefore, 8-noded or 12-noded isoparametric shape func-
tions are used as the “old shape functions.” Rewriting the enriched
interpolation functions as Pj,l=Nj�l, the displacement field can be
expressed as

�u�x,y,t�
v�x,y,t� � = �

m=1

M

�ūe−i�mt �11�

where M is the number of sampling points in the frequency
domain, and

� = 
R1 0 R2 0 ¯ Rn 0

0 R1 0 R2 ¯ 0 Rn
� �12�

where

R j = �Pj,1 Pj,2 ¯ Pj,NW� �13�

ū is a vector consisting of nodal unknown coefficients,

ū = ��1 	1 ¯ �n 	n�T �14�

where

� j = �Aj
1 Aj

2
¯ Aj

NW� �15a�

	 j = �Bj
1 Bj

2
¯ Bj

NW� �15b�

3 Weak Formulation in Frequency Domain
With the above description of the enriched displacement field,

the Hamiltonian for the two-dimensional elastodynamics is given
by


P =�
t1

t2 
 1

2 � �
�

�TD�dxdy −�
S

qT�ds − �
k=1

K

Pk
T�k

−
1

2 � �
�

d�T

dt



d�

dt
dxdy�dt �16�

where t1 and t2 are the starting time and ending time, respectively,
D is the elasticity matrix for the plane stress model adopted here,
and � is a vector containing the two displacement components and
is defined as

� = �u

v
� �17�

The diagonal matrix 
 for mass density � can be expressed as


 = 
� 0

0 �
� �18�

The terms Pk and q in Eq. �16� are the applied concentrated loads
and applied distributed loads, respectively. The strain vector � in
Eq. �16� is defined in the following form
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� = ��xx

�yy

�xy
� =�

�u

�x

�v
�y

�u

�y
+

�v
�x

� = �
m=1

M

�ūe−i�mt �19�

where

� = �
�R1

�x
0

�R2

�x
0 ¯

�Rn

�x
0

0
�R1

�y
0

�R2

�y
¯ 0

�Rn

�y

�R1

�y

�R1

�x

�R2

�y

�R2

�x
¯

�Rn

�y

�Rn

�x

� �20�

To obtain the strain-displacement matrix �, the derivatives in Eq.
�20� are calculated as follows:

�Pj,l

�x
= 
 �Nj

�x
+ iklNj��l �21a�

�Pj,l

�y
= 
 �Nj

�y ��l �21b�

The kinetic energy term in Eq. �16� can further be expanded as

� =�
t1

t2 1

2 � �
�

d�T

dt



d�

dt
dxdydt = � 1

2 � �
�

d�T

dt

�dxdy�

t1

t2

−�
t1

t2 1

2 � �
�

�T

d2�

dt2 dxdydt �22�

where

d2�

dt2 = �
d2u

dt2

d2v
dt2
� = − �

m=1

M

�m
2�ūm

v̄m
�e−i�mt = − �

m=1

M

�m
2 �ūe−i�mt

�23�

Subsequently, similar to the displacement field in Eq. �11�, by
employing FFT, the distributed load q and concentrated load Pk in
the time domain are described as

q�x,y,t� = �
m=1

M

q̄�x,y,�m�e−i�mt,

Pk�xk,yk,t� = �
m=1

M

P̄k�xk,yk,�m�e−i�mt �24�

For the convenience of description, the local elemental vari-

ables are transformed into the structural global ones as ū=TŪ.
Finally, Eq. �16� for an arbitrary element can be rewritten as


P =�
t1

t2

�
m=1

M 
	1

2 � �
�

ŪTTT�TD�TŪdxdy −�
S

q̄T�TŪds

− �
k=1

K

P̄k
T�kTŪ −

1

2
�m

2 � �
�

ŪTTT�T
�TŪdxdy

��e−i�mt�2�dt − � 1

2 � �
�

d�T

dt

�dxdy�

t1

t2

�25�

Using a variational principle, the finite element equilibrium
equation is obtained as

�K̄ − �m
2 M̄�Ū = P̄ �26�

in which, the complex matrices are expressed as follows:

K̄ = �
1

NE � �
�e

TT�TD�Tdxdy �27a�

M̄ = �
1

NE � �
�e

TT�T
�Tdxdy �27b�

P̄ = �
1

NE �
S

q̄T�Tds − �
k=1

K

P̄k
T�kT �27c�

where NE is the number of elements. Thus, the proposed HSE is
obtained. The main advantage of the above formulation is that a
complex distribution in the y-axis can be modeled easily due to
Lagangian FE interpolation, and a long but finite span in the
x-axis can be modeled accurately using a much smaller number of
these new elements compared to the standard Lagrangian FE
model. Moreover, the near-exact feature of wave propagation
characteristics along the x-axis is ensured, which leads to spectral
convergence for interpolation parallel to the x-axis. Subsequently,
the h convergence can be expected for interpolation parallel to the
y-axis, since the wave modes are only functions of the x-axis.

4 Numerical Implementation
In the elemental matrices in Eqs. �27a�–�27c�, the integrals en-

countered are of the form

Ilm =�
−1

1 �
−1

1

f��,��ei�klx�ei�kmx��J�d�d� �28�

where J is the Jacobian matrix for isoparametric mapping. The
expression f�� ,�� involves the product of the “old shape func-
tion,” their derivatives, etc. In this section, the evaluation of these
integrals is carried out using higher-order Gauss-Legendre inte-
gration scheme. The number of integration points depends on the
element nodal spacing with respect to the smallest wavelength
��l=2� /kl� at a given frequency �m. As will be shown later, only
a few of the proposed HSEs in the spanwise direction of the beam,
and hence, a few degrees of freedom can produce sufficient accu-
racy even for high-frequency excitation if the proper numerical
integration scheme is used. Therefore, unlike the Lagrangian FE
method, the computational time is mainly consumed at the step of
numerical integration while calculating the dynamic stiffness ma-
trix and the mass matrix, but not at the step of FE system solution.
Numerical implementations of the proposed HSEs require effi-
cient integration algorithms, such as frequency-dependent and el-
emental size-dependent numerical integration scheme. Consider a
section with unit length, i.e., x� �0,1�, the number of cycles of
sin and cos functions within the domain is around 0.1k1. There-
fore, in order to integrate one single cycle accurately, at least
30 Gauss integration points are needed. For example, for more
accuracy, if 60 Gauss integration points are taken for one cycle of
sin and cos functions, the number of Gauss integration points
�NG� for the element i in the x-axis is roughly determined as
NGi=6Le

i k1
i ��m�, where k1

i ��m� is the flexural wave number of the
element i at frequency �m, and Le

i is the length along the x-axis of
the element i. However, the minimum number of Gauss integra-
tion points is set to be 6. Such a consistent choice of frequency-
dependent and elemental size-dependent integration scheme can
efficiently reduce the computational cost. In the direction parallel
to the y-axis, the number of Gauss integration points is set to be 2
for eight-noded element and 3 for 12-noded element, respectively.
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Having obtained Ū containing Aj
l and Bj

l, the displacements in
the frequency domain can be calculated using Eq. �9�, therefore,
the solution in the time domain is evaluated simply by applying
the inverse FFT.

4.1 Assemblage of Interior and Exterior Regions Using
Global-Local Approach. As will be verified later from the nu-
merical examples, the proposed HSEs are very efficient for the
quasi-two-dimensional waves propagation at low, as well as high
frequencies. However, at high frequencies, the accuracy is not so
high when the forward and the backward propagation exist simul-
taneously and the propagation distance is long. The main reason is
the dissimilar orders in the diagonal elements of the stiffness and
the mass matrices, which are contributed by the exponential
terms, i.e., the terms determined by wave numbers k3 and k4. For
high-frequency waves, the components of stiffness and mass ma-
trices, which involve �3=ei�k3�x−xL�� in Eq. �9� for large x, and
�4=e−i�k4�xU−x�� in Eq. �9� for large xU and small x, are too small
compared to the other elements in the matrices. These small ele-
ments, especially small diagonal elements of the stiffness and
mass matrices, may cause the numerical instability. For instance,
to deal with the boundary conditions for propagation in both di-
rections, the forward and backward terms are coupled at the
boundary. When x is large at the boundary, the forward terms
involving �3=ei�k3�x−xL�� are very small. On the other hand, the
backward terms involving �4=e−i�k4�xU−x�� are well conditioned.
The numerical instability is thus inherent.

For the cases of unidirectional propagation of waves, e.g., only
forward propagation alone, the elements of the stiffness matrix
and the mass matrix involve only the term �3=ei�k3�x−xL��. As
stated above, although this term has the similar exponential char-
acteristics as x increases, by collocating the diagonal elements

corresponding to the exponential decay in the matrix �K̄−�m
2 M̄�

in a decreasing sequence, the numerical instability can be effec-
tively removed. However, this technique is not suited for the cases
of the simultaneous propagation of forward and backward waves.
For such double directional propagation of high-frequency waves,
the present element is only applicable for short traveling distance.
In fact, from the authors’ numerical experience, the existence of
the exponential decay causes many numerical troubles. To over-
come this problem, the new HSE needs to be combined with the
ordinary spectral element model or any other efficient discretized
model of the exterior region. As shown in Fig. 1, this new HSE is
employed for the smaller interior region, and the ordinary spectral
elements are used to model the exterior region. Another purpose
of assembling the ordinary spectral element for the uniform exte-
rior region is to reduce the computational cost to a greater extent.

In the global-local approach, the displacement continuity at the
boundary of the two regions must be ensured. With the help of Eq.
�9� and by setting Nj =1, the condition of displacement continuity
between the interior and the exterior regions �see Fig. 1� at the
node j in an arbitrary HSE can be expressed as

ūm�x,y,�m� = �
l=1

NW

�lAj
l = − y�̄�x,�m� �29a�

v̄m�x,y,�m� = �
l=1

NW

�lBj
l = w̄�x,�m� �29b�

where �̄�x ,�m� and w̄�x ,�m� are the rotation and the transverse
displacement degrees of freedom in the spectral element �see �9�
for details�.

There exist three different approaches for enforcing the inter-
face displacement continuity in context of global-local finite ele-
ment analysis. The first approach is the direct enforcement of the
constraints at the interfaces as reported by Gopalakrishnan and
Doyle �15�. The second approach is the weak enforcement using
Lagrangian multiplier as reported by Halliday and Grosh �16�.

Finally, the third approach is the weak enforcement based on mul-
tipoint constraints as reported by Mahapatra and Gopalakrishnan
�11�. While using two dissimilar models, e.g., standard Lagrange-
ian FE model for the interior region and the ordinary spectral
element model for the exterior region, direct enforcement of in-
terface constraints �15� appears computationally intensive and re-
quires cross-check against numerical convergence. Again, from
the authors’ numerical experiences, it is found that the penalty
function method �11� is not efficient while using dissimilar models
for the exterior and the interior regions, since the choice of pen-
alty parameters is very difficult and the introduction of large pen-
alty parameters may result into the numerical instability. In the
present global-local approach, the Lagrangian multiplier method
is employed to enforce the displacement continuity conditions
given in Eqs. �29a� and �29b�.

5 Numerical Examples

5.1 Comparison to Traditional FEM. Consider a one-
dimensional �1D� beam shown in Fig. 2, which is subjected to a
transverse load P�t� at the free end, i.e., x=0, which is expressed
as

P�t� = �0.5�1 − cos�2�ft/N�sin�2�ft�� , t � N/f

0, t � N/f
� �30�

where f is the central frequency in hertz and N is the number of
sinusoidal cycles within a pulse.

To compare to the traditional FEM, the authors consider the
low-frequency excitation case, where f =50 Hz, and N
=15 cycles. The sample duration time T is 4.8 s. The Nyquist
frequency is Nq /2T, where the number of sampling points is Nq
=2k ,k=12, and is used consistently in the following several ex-
amples. The traditional 2D eight-noded isoparametric element is
employed for comparison. The traditional FEM mesh possesses 84
elements with two elements in the thickness direction and 42 el-
ements in the spanwise direction. Only six eight-noded HSEs are
used with two elements in the thickness direction and three ele-

Fig. 3 Deflections of the present element and the traditional
FEM at two measurement points

Fig. 2 Schematic diagram of a 1D problem
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ments in the spanwise direction. The same eight-noded HSEs will
be used in all the following examples. The beam is made of alu-
minum with the following properties: E=73.0 GPa, G
=28.08 GPa, �=0.3, and �=2770 kg/m3. The thickness of the

beam �h� is equal to 10.0 mm. The span of the beam for the
present example is taken as 1260.0 mm. The width of the beam is
taken as 10.0 mm. The above constants are consistently used in all
the following examples. The responses at the far ends are assumed

Fig. 4 „a… Transverse velocities of the present element and the throw-off spectral element at two measurement points for a
beam of thickness of 10 mm, „b… transverse velocities of the present element and the throw-off spectral element at two
measurement points for a beam of thickness of 5 mm, „c… relative difference between velocities of the present element and the
throw-off spectral element at two measurement points for a beam of thickness of 10 mm, „d… relative difference between
velocities of the present element and the throw-off spectral element at two measurement points for a beam of thickness of
5 mm, and „e… convergence check of number of Gauss integration points along the x-axis for a beam of thickness of 10 mm
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to be zero, and the reflected wave modes are eliminated. To im-
pose such absorbing boundary condition, the nodal degrees of
freedom corresponding to the backward-propagating modes are
set to be zero. It means that Aj

2, Aj
4, Bj

2, and Bj
4 in Eq. �9� are set to

be zero at all the nodes. Furthermore, Aj
1, Aj

3, Bj
1, and Bj

3 in Eq.
�9�, which are the degrees of freedom corresponding to the for-
ward propagation, are set to be zero at the nodes on the far end.
Two measurement points are considered at x=0.0 mm, and x
=210.0 mm away from the source of excitation. Comparison of
the time histories of deflections at the measurement points is
shown in Fig. 3. This result reveals that the present element can
attain very high accuracy, although the mesh is very coarse. In
fact, the present method is almost insensitive to the number of
elements when a sufficiently higher-order Gauss integration
scheme is employed in the x-axis.

5.2 Comparison With Throw-off Spectral Element. Con-
sider a similar problem as shown in Fig. 2. The high-frequency
case, where f =20 kHz and N=5 cycles is investigated. The
sample duration time T is 0.012 s. The authors compare the per-
formance of the present element to that of the throw-off spectral
element �9�, which only tackles the unidirectional wave propaga-
tion. In this example, the beam is considered to have enough
length, i.e., 1200.0 mm. The response at the far end is imposed to
be zero, and the reflected wave modes are excluded. Therefore,
the unknown parameters, i.e., Aj

l and Bj
l are dealt in the same way

as the previous example. The present approach employs 16 ele-
ments with two elements in the thickness direction and eight ele-
ments in the spanwise direction. For high-frequency cases, the
amplitude of deflection becomes very small, and here the trans-
verse velocity is selected for plotting. The transverse velocities at
two measurement points, i.e., at x=0.0 mm, and x=100.0 mm are
obtained. Comparison of the time histories of transverse velocity
at these measurement points is shown in Fig. 4�a�. It may be noted
that the result obtained using the present element is in good agree-
ment with those obtained using the spectral throw-off element.
When the thickness of the beam is equal to 5.0 mm, the results of
the two approaches are illustrated in Fig. 4�b�. In this case, the
amplitude of the transverse velocity increases and the velocity of
traveling wave decreases due to the thinner beam. Furthermore,
both results are in very good agreement. The absolute difference
between the two kinds of results, which is normalized by the
maximum absolute value in the results of spectral element, indi-
cates relative difference between the results of the two methods.
This relative difference is shown in Figs. 4�c� and 4�d�. It is ob-
served in these figures that the maximum relative difference is
�5% for 10 mm thickness in Fig. 4�c� and �3% for 5 mm thick-
ness in Fig. 4�d�, respectively. This difference may be due to the
fact that the method used here is for 2D plane problems, whereas
the spectral element method is constructed from beam theory. The
influence of the number of Gauss integration points on the results
for x=100.0 mm, h=10.0 mm, is shown in Fig. 4�e�, where, as
stated before, for one single element, the number of Gauss inte-
gration points in the x-axis is calculated as: NGi=opLe

i k1
i ��m�

with a parameter op, but the minimum number of integration
points is set to be 6. From this Fig. 4�e�, it can be seen that op
=0.5 cannot produce the correct result. With the increase in op,
the result converges monotonically. In fact, the result for op=3 is
almost identical to that of op=6.

5.3 Comparison to Ordinary Spectral Element. In this sec-
tion, a cantilever beam as shown in Fig. 5�a� is considered and
two ordinary spectral elements �9� are employed, i.e., one finite
and the other throw-off. The material properties are the same as in
the previous examples. f =20 kHz, and N=5 cycles are chosen in
this example. The length of the beam from the fixed end to the
point of application of transverse load is 2000.0 mm. As shown in
Fig. 5�b�, the entire domain in Fig. 5�a� is divided into three
portions, i.e., two finite ordinary spectral elements with length of

990.0 mm, and one interior region with length of 20 mm dis-
cretized by the present HSEs. The two HSEs are only employed
for the interior region between region 1 and region 2, where in the
spanwise direction, only one HSE is used. The comparison of time
histories of transverse velocity at the loading point is depicted in
Fig. 6. This figure clearly shows both the incident and reflected
waves. It can also be noted that both results, which are based on
the meshes in Figs. 5�a� and 5�b�, are in good agreement. How-
ever, there are some small oscillations while using the global-local
approach. This phenomenon may be caused by the mismatch be-
tween the HSE dynamic stiffness and that of the ordinary spectral
element due to the different assumptions for the displacement field
interpolation. The fact is that there is no contraction in the thick-
ness direction considered in the ordinary spectral element model.
In fact, by observing Figs. 4�c� and 4�d�, it can also be found that
the results of the present HSE do not completely match with those
of the throw-off spectral element. Generally, this mismatch does
not cause a serious problem in the low-frequency cases. However,
with the increase in the excitation frequency, the effects of mis-
match become more obvious. From the authors’ numerical expe-
riences, increasing the number of the present HSEs along the
spanwise and thickness directions to alleviate the effects of this
mismatch is not effective.

Fig. 5 „a… Schematic diagram of a cantilever beam using the
spectral element only and „b… schematic diagram of a cantilever
beam using the hybrid approach

Fig. 6 Transverse velocities of the spectral element only and
the hybrid approach at the load point
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5.4 Cantilever Beam With Two Symmetric Transverse
Cracks. In this section, another example identical to the previous
one is considered, except that there are two symmetric transverse
cracks having depth h1 as shown in Fig. 7. Six present HSEs are
employed to model the interior region. With the present elements,
the crack geometry can be easily modeled. The placement of the
element nodes at the interior region and the crack surfaces are
shown in Fig. 7. The crack surfaces essentially form the interele-
ment discontinuity. The effect of contact between the two crack
surfaces is neglected. The time histories of transverse velocity of
the intact and cracked beams �h1=3.0 mm� at the loading point
are shown in Fig. 8�a�. The first reflection from the cracks can be
accurately identified in Fig. 8�a�, which arrives at t=0.001 s. The
first reflection from the fixed end can be identified for both the

intact and cracked cases. However, the amplitude of the first re-
flection from the fixed end in the cracked beam is much lower
than that of the intact beam. Furthermore, the second reflection
from the fixed end can also be identified for the cracked beam.
Here, the second reflection is the combination of �i� part of the
first reflection from the fixed end, which is reflected by the cracks
back to the fixed end and �ii� the second reflection stated in �i� by
the fixed end, which finally arrives at the measurement point. This
second reflection does not appear for the case of intact beam.
When h1=1.5 mm, the results are shown in Fig. 8�b�. It is ob-
served that the amplitude of reflection from the cracks decreases
and the amplitude of reflection from the fixed end increases as the
crack depth decreases.

5.5 Cantilever Beam With Four Transverse Cracks. As
shown in Fig. 9, four transverse cracks are considered. The inte-
rior region is 120 mm long and the distance between the two sets
of transverse cracks is 80 mm. Nine present HSEs are employed
for the interior region, and the crack depth h1=3.0 mm. Other
conditions are identical to the above example. The transverse ve-
locity at the loading point is shown in Fig. 10. It can be seen that
the reflections from two sets of cracks overlap due to the short
distance between the cracks. Compared to the results in Fig. 8�a�
for two transverse cracks, here the amplitude of reflection from
the four cracks is higher. However, the reflection from the fixed
end has decreased significantly.

5.6 Cantilever Beam With a Lateral Crack at Midplane.
Here, the case shown in Fig. 11 is considered, where a lateral
crack is located at the midplane of the beam. Six present HSEs,
with three elements in the spanwise direction and two elements in
the thickness direction, are employed to model the interior region.
Other conditions are identical to the above examples. The effect of
contact between the two crack surfaces is neglected. Time histo-
ries of transverse velocity at the loading point for the two different
crack lengths are shown in Fig. 12. Inspection of this figure re-
veals that the change in the shape of the scattered pulse is not so

Fig. 7 Schematic diagram of a cantilever beam with two sym-
metric transverse cracks

Fig. 8 „a… Transverse velocities of intact and cracked beams
for h1=3.0 mm at the load point and „b… transverse velocities of
intact and cracked beams for h1=1.5 mm at the load point

Fig. 9 Schematic diagram of a cantilever beam with four trans-
verse cracks

Fig. 10 Transverse velocities of intact and cracked beams at
the load point
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obvious compared to that of the intact beam, when the lateral
crack is short, i.e., L1=20 mm. However, when L1=60 mm, the
reflection from the lateral crack can be clearly identified. By com-
paring this result to those of the previous transverse cracks cases,
it is observed that, under the present loading condition and fre-
quency band of excitation, the scattered waves are not sensitive to
the presence of lateral crack.

6 Conclusions
In this paper, a new global-local hybrid spectral element �HSE�

method is presented to model the wave propagation in beams with
various damages. In this approach, the ordinary spectral element
method is employed to simulate the behavior of wave propagation
in the exterior regions, meanwhile the proposed HSEs are used to
model the interior region containing the damages in the form of
cracks. Formulation of the proposed HSE is based on the hybrid
interpolation scheme, where the Lagrangian family of interpola-
tion bases is enriched by introducing four wave modes �two flex-
ural wave modes and two shear wave modes� associated to the
interpolation along one of the two mutually orthogonal coordi-
nates for the 2D plane elastodynamic problem. Frequency-domain
finite element model is then obtained by minimizing the Hamil-
tonian. The proposed approach essentially balances the advan-
tages of �i� the ordinary spectral element model, which is the

direct solution to the strong form, in which the solution is en-
forced in a point-wise sense, as well as �ii� the weakly formulated
finite element, where the solution is enforced in a piecewise dis-
crete sense. The advantage of �i� is in the high numerical effi-
ciency while solving transient elastodynamics. The advantage of
�ii� is in the efficient handling of complex geometry.

With this balanced approach, accurate analyses can be realized
with a very coarse FE mesh. The proposed HSEs are highly effi-
cient and hence can be used to model more complex problems.
Some numerical examples are shown to illustrate the effectiveness
of the present eight-noded element. Wave propagation in beams
with various damages in the form of transverse and lateral cracks
has been studied using the global-local technique. It is shown
from the numerical results that the reflection from the damages
can be identified, and the pattern of wave propagation in beams
with complex crack configurations can be efficiently studied.
Moreover, the wave response seems to be less sensitive to the
presence of lateral crack compared to the presence of transverse
crack.
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Plane Analysis of Finite
Multilayered Media With Multiple
Aligned Cracks—Part I: Theory
Elasticity solutions are developed for finite multilayered domains weakened by aligned
cracks that are in a state of generalized plane deformation under two types of end
constraints. Multilayered domains consist of an arbitrary number of finite-length and
finite-height isotropic, orthotropic or monoclinic layers typical of differently oriented,
unidirectionally reinforced laminas arranged in any sequence in the plane in which the
analysis is conducted. The solution methodology admits any number of arbitrarily dis-
tributed interacting or noninteracting cracks parallel to the horizontal bounding surfaces
at specified elevations or interfaces. Based on half-range Fourier series and the local/
global stiffness matrix approach, the mixed boundary-value problem is reduced to a
system of coupled singular integral equations of the Cauchy type with kernels formulated
in terms of the unknown displacement discontinuities. Solutions to these integral equa-
tions are obtained by representing the unknown interfacial displacement discontinuities
in terms of Jacobi or Chebyshev polynomials with unknown coefficients. The application
of orthogonality properties of these polynomials produces a system of algebraic equa-
tions that determines the unknown coefficients. Stress intensity factors and energy release
rates are derived from dominant parts of the singular integral equations. In Part I of this
paper we outline the analytical development of this technique. In Part II we verify this
solution and present new fundamental results relevant to the existing and emerging
technologies. �DOI: 10.1115/1.2201883�

1 Introduction
Multilayered media appear in many modern composites and

advanced material systems, including protective coatings, lami-
nated ceramics, microelectronic packages, layered nanofilms,
functionally graded, and multifunctional materials and adhesive
joints. A common failure mode present in such high-performance
multilayered structures is the delamination of adjacent layers or
spallation caused by interlaminar cracks or cracks parallel to the
bounding horizontal surface. The interfacial crack problem, there-
fore, has attracted considerable attention aimed at improving the
structural integrity and reliability of layered materials and struc-
tural components.

Investigations into analytical solutions of plane crack problems
have been conducted by many researchers since the 1920s. In
general, the various analytical approaches are based either on
Muskhelishvili’s �1,2� complex potential method or Sneddon’s
�3,4� Fourier transform and series techniques. A periodic array of
cracks along a single horizontal row or a single vertical column in
an infinite homogeneous and isotropic medium is amenable to the
complex potential treatment by expressing the complex potential
in terms of a singular integral that satisfies the required periodicity
conditions, effectively reducing the problem to a single crack
problem, Westergaard �5�, Koiter �6�, Sneddon and Srivastava �7�,
Lowengrub �8�, as discussed by Sneddon and Lowengrub �9�. Er-
dogan �10� extended this approach to two collinear interacting
cracks, while Rice and Sih �11� considered cracks along an inter-
face separating two dissimilar half planes. Doubly periodic crack
arrays were analyzed by Delameter et al. �12� using the singular

integral equation and Green’s function approach within a unit cell
framework based on periodic boundary conditions.

For arbitrarily oriented interacting cracks, rigorous analytical
treatment is difficult and thus different approximate approaches
have been proposed. Isida �13� used a Laurent series representa-
tion of complex potentials and a perturbation technique for the
problem of an infinite isotropic plate with randomly distributed
cracks of arbitrary size and orientation. Chen �14� and Horii and
Nemat-Nasser �15� proposed a pseudotraction method based on
approximating tractions on interacting crack surfaces by suitable
polynomials whose coefficients were obtained from the solution
of a system of algebraic equations generated by the imposition of
consistency conditions. Kachanov �16,17� used a similar but sim-
plified approach based on approximating crack tractions by their
averages. This approach was subsequently extended to anisotropic
materials by Mauge and Kachanov �18�. Du and Aydin �19� used
asymptotic crack-tip and far-field stress approximations and su-
perposition to analyze interaction of crack arrays of various ar-
rangements and geometrical configurations in infinite isotropic
media under plane strain. Binienda �20� used the Fourier trans-
form technique together with superposition to analyze an infinite
isotropic plate with fully interacting multiple cracks subjected to
farfield loading under plane stress or plane strain conditions. Sh-
beeb et al. �21� extended this approach by considering an inhomo-
geneous isotropic plate with exponentially varying Young’s modu-
lus along a fixed direction.

Erdogan and Gupta �22� and Erdogan �23� outlined a general
solution procedure for a multilayered medium containing a single
crack based on the Fourier transform technique, which allowed us
to reduce the problem to a system of singular integral equations
governing the crack opening displacement components. Numeri-
cal results were obtained for three-layer systems with a crack
embedded in a homogeneous layer and between dissimilar layers.
This approach was extended by Chatterjee et al. �24� and Chatter-
jee �25� to arbitrarily layered media with isotropic, orthotropic,
and monoclinic plies containing multiple cracks along different
interfaces using the local/global stiffness matrix approach. Nu-
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merical results were limited to single delaminations due to con-
siderable computational difficulties of dealing with interacting
cracks. Pindera �26� illustrated the utility of this approach in ana-
lyzing interlaminar stress distributions in a bimaterial beam with
two symmetrically positioned, noninteracting disbonds under
three-point bending upon a comparison with experimental and
finite-element results. Choi and Thangjitham �27� provided addi-
tional results following the approach of Chatterjee et al. �24� and
Chatterjee �25�.

In contrast, relatively little analytical work has been reported on
multiple crack interaction in homogeneous or layered media with
finite dimensions in the plane of analysis. Isida �28� used Laurent
series representations of complex potentials together with a
boundary collocation procedure to analyze width and length ef-
fects of rectangular plates on the stress intensity factors of cen-
trally positioned cracks. Periodic arrays of cracks in plates with
one finite dimension could be modeled using this approach by a
suitable adjustment of the boundary conditions. Chatterjee �29�
investigated two symmetric cracks in finite multilayered isotropic
or orthotropic media pinned vertically at right and left ends under
three point bending using a quarter-range Fourier series represen-
tation of the displacement field in each layer and a local/global
stiffness matrix approach. Chen �30� proposed a semianalytical
and numerical method to analyze multiple crack problems for fi-
nite homogeneous plates with an arbitrary contour configuration
from elementary infinite solutions. This method is similar to the
boundary force method based on the superposition of opposite
tractions along an imaginary boundary in an infinite medium used
to match boundary conditions of finite specimens. Zhan et al. �31�
solved the problem of a finite homogeneous isotropic plate with
multiple microcracks using a series expansion of complex poten-
tials and a boundary collocation procedure based on a superposi-
tion scheme. Seelig et al. �32� presented a hybrid numerical-
analytical method for finite homogeneous bodies with multiple
cracks using Kachanov’s pseudotraction technique together with a
boundary element method for bounded domains.

In this paper, we present a unified solution methodology for
finite-dimensioned multilayered configurations with two types of
end constraints that contain any number of arbitrarily distributed
interlaminar or horizontal cracks in the plane of analysis. The
crack opening displacements result from external, internal, or
combined normal loading. The solution admits �transversely� iso-
tropic, orthotropic, or monoclinic layers. The latter are obtained
by rotation of a transversely isotropic, or orthotropic layer about
the layer’s normal axis; Fig. 1. The employed displacement for-
mulation, and solution of the Navier’s equations, is based on suit-
able half-range Fourier series representations of the displacement
components that admit end-face constraints that mimic horizontal
and vertical pins. Following the treatment of layered media infi-
nitely long in the horizontal direction by Erdogan �23�, Chatterjee
et al. �24�, Chatterjee �25�, and Pindera �26�, the present finite-
domain problem is reduced to the determination of the crack-
opening displacement components for the pth crack situated along

the �th interface in the interval c�
�p�

�x�d�
�p�, which is governed

by the standard system of coupled singular integral equations

T�
+�x� = Ā�

*��
�p��x� +

1

�
�

c�
�p�

d�
�p�

B̄�
* ��

�p��x��
x� − x

dx�

+
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��
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n

�
q=1

Q���

�
c�

�q�

d�
�q�

K̄���x,x����
�q��x��dx� + F��x� �1�

In the above, n in the summation limit is the total number of
layers �assuming that in the most general case all interfaces are
cracked�, Q��� is number of cracks on the �th interface, T�

+�x� is
the traction vector specified on the bottom face of the pth crack on
the cracked �th interface, ��

�p��x� is the unknown displacement
discontinuity density vector �noting that ��

�q��x�� may be zero if

the �th interface is uncracked�, K̄���x ,x�� are regular Fredholm

kernels, F��x� is the specified external load vector, and Ā�
* , B̄�

* are
constant square matrices whose elements depend only on the ma-
terial properties of adjacent layers. Muskhelishvili �1,2� and Er-
dogan et al. �33� outlined a solution technique for such singular
integral equations based on the properties of appropriate orthogo-
nal polynomials. An explicit evaluation of the Fredholm kernels

K̄���x ,x�� for multiple interacting cracks presents considerable
difficulties, which in the past have limited the implementation of
this exact elasticity formulation to problems involving one or two
cracks.

The reduction of the finite-domain multilayered interface crack
problem to the standard form given by Eq. �1� is also based on the
local/global stiffness matrix formulation �albeit in the harmonic
parameter domain�, and the extraction of the Cauchy kernel in the
crack-face traction condition above is facilitated by the asymptotic
behavior of the local stiffness matrix as the harmonic number m

→�. The regular Fredholm kernels K̄���x ,x�� derived in explicit
form include contributions resulting from interactions among all
cracks, as well as from crack-vertical boundary interactions absent
in the Fourier-transform treatment. A representation of the un-
known displacement discontinuities in terms of Jacobi polynomi-
als �or Chebyshev polynomials for cracks between adjacent layers
of the same material� multiplied by unknown coefficients reduces
the singular integral equations to a system of algebraic equations.
A solution for the unknown coefficients produces, in general,
mixed-mode stress intensity factors and strain energy release rates
for each crack, as well as tractions along each cracked interface
and stress and displacement fields over the entire multilayered
domain. These are presented in Part II of this paper for a number
of technologically important cases. The developed elasticity-based
capability of extracting important fracture mechanics parameters
for multiply cracked layered media in a wide range of materials
applications can also be used as a verification tool for extracting
these parameters from various conservation integral-based nu-
merical approaches; cf. Kim and Paulino �34� for recent applica-
tions involving graded media.

2 Problem Definition and Formulation
The problem under consideration is illustrated in Fig. 2. It in-

volves a finite-height, finite-length layered plate of dimensions H
and L that extends to infinity in the out-of-plane direction. The
total number of layers is n and the kth layer thickness is hk. Each
layer is fully bonded to its adjacent neighbors along each un-
cracked interface. The number of cracks along each cracked inter-
face is Q���, where � is the index associated with the cracked �th
interface; see Eq. �1�. The individual crack intervals along the �th
interface are designated by c�

�q�
�x�d�

�q�, where q is the index
associated with the qth crack. Cracks within a layer are treated as
interlaminar cracks between two layers of the same material prop-

Fig. 1 A unidirectional composite layer rotated by an angle
about axis perpendicular to its plane
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erties. There is no limit on the number of cracks along a given
interface, and no limit on the number of interfaces containing
cracks.

The individual layers are either �transversely� isotropic, ortho-
tropic, or monoclinic. Monoclinic layers are obtained by rotating a
transversely isotropic or orthotropic layer about the vertical axis z
by an angle � such as would be done in a multilayered composite
plate comprised of differently oriented unidirectional plies. Each
layer is linearly elastic whose response is represented by the gen-
eralized Hooke’s law expressed in matrix form

� = C� �2�

where �= ��xx ,�yy ,�zz ,�yz ,�xz ,�xy�T is the stress vector, �
= ��xx ,�yy ,�zz ,2�yz ,2�xz ,2�xy�T is the engineering strain vector,
and the stiffness matrix C has the form given below for an ortho-
tropic ply whose principal material coordinate system coincides
with the global coordinate system x−y−z shown in Fig. 2,

C = �
C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

� �3�

The stiffness matrix for a transversely isotropic ply with the x−z
plane of isotropy is obtained by setting C12=C23, C11=C33, C44
=C66, and C55=1/2�C11−C13�, with similar relations for fully iso-
tropic plies. A transversely isotropic or orthotropic ply rotated by
an angle about the z axis behaves like a monoclinic ply in the

global �fixed� coordinate system, and its stiffness matrix C̄��� is
related to the stiffness matrix C in the principal coordinate system
by the transformation equations

C̄��� = T1CT2
−1 �4�

The transformation matrices T1 and T2 relate stress and engineer-
ing strain quantities in the principal coordinate system, � and �, to
the corresponding quantities in the rotated �primed� coordinate
system, �� and �� �i.e., ��=T1� and ��=T2�� and are used to
derive Eq. �4� from Hooke’s law in the principal material coordi-
nate system. Under the above transformation, the stiffness matrix

C̄��� acquires the following form in the global coordinate system

C̄��� = �
C̄11 C̄12 C̄13 0 0 C̄16

C̄12 C̄22 C̄23 0 0 C̄26

C̄13 C̄23 C̄33 0 0 C̄36

0 0 0 C̄44 C̄45 0

0 0 0 C̄45 C̄55 0

C̄16 C̄26 C̄36 0 0 C̄66

� �5�

The loading applied to the layered plate in the x−z plane on the
top and bottom faces can be either in the form of normal traction
specified by the stress component �zz, with the shear traction com-
ponents �yz ,�xz set to zero, or the normal displacement w with the
shear traction components set to zero. Each crack face can also be
subjected to specified tractions or kept traction-free. The specified
boundary conditions are independent of the out-of-plane coordi-
nate y, and thus in the presence of monoclinic plies all three
displacement components are present and are functions of the in-
plane coordinates x and z, namely u�x ,z� ,v�x ,z� ,w�x ,z�. Such a
displacement field is called generalized plane deformation, Lekh-
nitskii �35�, and reduces to plane strain in the absence of mono-
clinic plies.

In addition, two ways of constraining the ends are considered;
Fig. 3. In the case of horizontally pinned ends,

u�0,z� = u�L,z� = 0, v�0,z� = v�L,z� = 0 �6�
This type of constraint produces no resultant vertical traction on
the end faces, requiring vertical equilibrium to be maintained by
appropriate boundary conditions applied on the top and bottom
surface of the layered plate. In the case of vertically pinned ends,

w�0,z� = w�L,z� = 0 �7�
vertical equilibrium is ensured by the end-face shear tractions that
result from the applied normal tractions on the top and bottom
surfaces.

The necessity of satisfying both the displacement and traction
continuity across the interfaces separating adjacent layers along
the fully bonded sections makes it desirable to formulate the prob-
lem in terms of displacements. The displacement formulation also
facilitates the introduction of displacement discontinuity functions
along the crack faces of embedded cracks that must be included in
the solution procedure to account for the crack opening displace-
ments due to external or internal loading. Using the generalized
Hooke’s law in conjunction with the strain-displacement equa-
tions

�xx = u,x, �yy = v,y, �zz = w,z

�xy =
1

2
�u,y + v,x�, �xz =

1

2
�w,x + u,z�, �yz =

1

2
�v,z + w,y� �8�

in the stress-equilibrium equations, the resulting Navier’s equa-
tions for a generic monoclinic ply under generalized plane defor-
mation are

C̄11u,xx + C̄55u,zz + C̄16v,xx + C̄45v,zz + �C̄13 + C̄55�w,xz = 0

C̄16u,xx + C̄45u,zz + C̄66v,xx + C̄44v,zz + �C̄36 + C̄45�w,xz = 0

Fig. 2 Geometry of the finite multilayered media with multiple
aligned cracks

Fig. 3 A finite-dimension layer in the plane of analysis show-
ing two types of end constraints: „a… Left and right ends hori-
zontally pinned; „b… left and right ends vertically pinned
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�C̄13 + C̄55�u,xz + �C̄36 + C̄45�v,xz + C̄55w,xx + C̄33w,zz = 0 �9�
where the subscripted commas denote partial derivatives with re-

spect to the specified coordinates, and C̄ij are stiffness matrix
elements obtained from the transformation equations given by Eq.
�4�. Coupling exists among the three displacement components for
a monoclinic layer. If the principal material coordinate system
coincides with the global coordinate system for an orthotropic or

�transversely� isotropic layer, the stiffness matrix elements C̄16,

C̄26, C̄36, and C̄45 vanish, thereby decoupling the out-of-plane dis-
placement v�x ,z� from the inplane displacements u�x ,z� and
w�x ,z� in the Navier’s equations.

3 Solution Procedure
The solution to the defined problem is obtained by first solving

the Navier’s equations for the unknown displacement field in each
layer without regard to the presence of interfacial cracks. The
presence of interfacial cracks is taken into account during the
application of interfacial continuity conditions between adjacent
layers through the introduction of displacement discontinuity den-
sity functions for the individual cracks. These unknown functions
are determined by constructing additional equations that specify
prescribed traction conditions on the individual crack faces.

The local/global stiffness matrix approach provides a conve-
nient framework for the systematic solution of multilayered media
problems. This approach reduces the size of the global system of
equations and facilitates an extraction of the correct form of the
governing integral equations for the interfacial displacement dis-
continuities, as described in the sequel. The local/global stiffness
matrix approach is similar to the flexibility matrix formulation
proposed by Bufler �36� for isotropic layered media. This ap-
proach was reformulated by Rowe and Booker �37� in terms of the
local stiffness matrix and applied to the plane analysis of nonho-
mogeneous isotropic layered soils with the horizontal dimension
extending to infinity. It was subsequently extended to laminated
composites with interlaminar cracks by Chatterjee and co-workers
�24,25,29�. Pindera �26� applied it to the problems of a radially
orthotropic layered disk, the delamination of a bi-material beam,
and frictionless contact on layered half planes with further exten-
sions given by Pindera and Lane �38�, and Urquhart and Pindera
�39�. Most recently it has been applied to the analysis of function-
ally graded and periodic materials, Bansal and Pindera �40,41�.

3.1 Solution of the Navier’s Equations for a Single Finite
Layer. The solution for the displacement field within each layer is
obtained in the local coordinate system with the origin centered
vertically halfway at each layer’s left end; Fig. 3. We obtain so-
lutions to the Navier’s equations under the aforementioned two
types of end constraints, namely, horizontally and vertically
pinned ends. These end constraints dictate the manner of Fourier
series expansions of the displacement components
u�x ,z� ,v�x ,z� ,w�x ,z� and the resulting stress components
�zz�x ,z� ,�xz�x ,z� ,�yz�x ,z� used to construct the local stiffness
matrix for each layer. In both cases, we use a combination of
appropriate half-range cosine and sine expansions for the indi-
vidual displacement components that generate the desired end
constraint at x=0,L. For example, the half-range cosine and sine
Fourier expansions for u�x ,z� are, respectively,

u�x,z� = ū0�z� + �
m=1

�

ūm�z�cos	m�x

L



u�x,z� = �
m=1

�

ūm� �z�sin	m�x

L

 �10�

with the respective Fourier coefficients ū0, ūm, ūm� given by the
Euler formulas

ū0�z� =
1

L�0

L

u�x,z�dx, ūm�z� =
2

L�0

L

u�x,z�cos	m�x

L

dx

ūm� �z� =
2

L�0

L

u�x,z�sin	m�x

L

dx �11�

For both types of end constraints, the solution for the displace-
ment field can be expressed in the following general form

U�x,z� = Ū0�z� + �
m=1

�

�m�x�Ūm�z� , �12�

where

U�x,z� = �w�x,z�
u�x,z�
v�x,z�

�, Ūm�z� = �w̄m�z�
ūm�z�
v̄m�z�

� �13�

and where Ū0�z� and �m�x� for the horizontally pinned end con-
straint have the forms

Ū0�z� = �w̄0�z�
0

0
� ,

�m�x� = �
cos	m�x

L

 0 0

0 sin	m�x

L

 0

0 0 sin	m�x

L

 � �14�

whereas for the vertically pinned end constraint they are

Ū0�z� = � 0

ū0�z�
v̄0�z�

� ,

�m�x� = �
− sin	m�x

L

 0 0

0 cos	m�x

L

 0

0 0 cos	m�x

L

 � �15�

The negative sign in the above Fourier series representation of
the displacement field for the vertically pinned case ensures that
the Navier’s equations reduce to the same system of ordinary

differential equations in the unknown harmonic vectors Ūm�z� for
both end constraints, thereby unifying the development of local/
global stiffness matrices for these two cases. The solutions for
each harmonic of the displacement components of these vectors
are then sought in the form,

Ūm�z� = U0
mem	z �16�

where the eigenvalues 	 and the associated eigenvectors U0
m are

given in Appendix A for monoclinic, orthotropic, and �trans-
versely� isotropic plies. The eigenvalues appear in ±	i pairs, al-
lowing to express the solutions for the displacement components
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in terms of hyperbolic eigenfunctions of z multiplied by unknown
eigenvectors. This is the form given in Appendix A, which is
employed in the construction of the mth harmonic of the local
stiffness matrix described in the next section.

Knowledge of the displacement components produces stress
components upon the use of the generalized Hooke’s law and
strain-displacement relations. In particular, the traction compo-
nents associated with the top and bottom surfaces of a monoclinic
layer can be evaluated from the stress components

�zz�x,z� = C̄13u,x + C̄33w,z + C̄36v,x

�xz�x,z� = C̄45v,z + C̄55�u,z + w,x�

�yz�x,z� = C̄44v,z + C̄45�u,z + w,x� �17�

Thus the above stress components have the same functional form
with respect to the variable x as the displacement components for
each end-constraint case, namely

T�x,z� = T̄0�z� + �
m=1

�
m�

L
�m�x�T̄m�z� �18�

where

T�x,z� = ��zz�x,z�
�xz�x,z�
�yz�x,z�

�, T̄m�z� = �
�̄zz

m�z�/
m�

L

�̄xz
m �z�/

m�

L

�̄yz
m �z�/

m�

L

� �19�

and where T̄0�z� for the horizontally and vertically pinned ends
has the respective forms

T̄0�z� = ��̄zz
0

0

0
�, T̄0�z� = � 0

�̄xz
0

�̄yz
0 � �20�

while �m�x� retains the same form as in the displacement expan-

sions. The components of T̄m�z� are given as linear combinations

of the components of Ūm�z� and their derivatives using Eqs. �17�.
The zeroth-harmonic components �̄zz

0 and �̄xz
0 , �̄yz

0 are constant and
represent average normal and shear tractions along a given inter-
face, i.e., �̄zz

0 = �1/L��0
L�zz�x ,h /2�dx, �̄xz

0 = �1/L��0
L�xz�x ,h /2�dx,

�̄yz
0 = �1/L��0

L�yz�x ,h /2�dx are the average tractions along any in-
terface. When only normal tractions are applied on the top and
bottom surfaces of the layered medium, �̄xz

0 = �̄yz
0 =0 for each ply

throughout the entire medium.

3.2 Local Stiffness Matrix for a Finite Layer. The local
stiffness matrix for the kth ply is constructed by relating the mth
harmonics of the three displacements on the top and bottom of the
ply to the corresponding traction harmonics,

T̄k
m± = �

±�̄zz
m±/

m�

L

±�̄xz
m±/

m�

L

±�̄yz
m±/

m�

L

�
k

, Ūk
m± = �w̄m

±

ūm
±

v̄m
± �

k

�21�

with ± in the superscript denoting respective harmonic terms at
the top and bottom surfaces of a layer, i.e., �̄zz

m±= �̄zz
m�z= ±hk /2�,

etc. By evaluating the harmonics of both displacement and stress
components at the top and bottom layer surfaces and

eliminating the common unknown eigenvectors, we obtain the
local stiffness matrix for the kth layer expressed in the following
symbolic form

�T̄k
m+

T̄k
m−
 = �K11

m,k K12
m,k

K21
m,k K22

m,k 
�Ūk
m+

Ūk
m−
 �22�

where the submatrices Kij
m,k have the following structure for a

monoclinic layer

�K11
m,k K12

m,k

K21
m,k K22

m,k 
 = �
k11

m k12
m k13

m k14
m k15

m k16
m

k12
m k22

m k23
m − k15

m k25
m k26

m

k13
m k23

m k33
m − k16

m k26
m k36

m

k14
m − k15

m − k16
m k11

m − k12
m − k13

m

k15
m k25

m k26
m − k12

m k22
m k23

m

k16
m k26

m k36
m − k13

m k23
m k33

m

�
k

�23�

with the individual elements derived explicitly in terms of the
harmonic number m, elastic constants and geometry of the layer,
and given in Appendix B.

The asymptotic form of the local stiffness matrix for m→�
plays a key role in reducing the governing equations for the crack-
opening displacement to Cauchy-type singular integral equations.
As m→�, the off-diagonal submatrices K12

m,k and K21
m,k that com-

prise the local stiffness matrix vanish, and the elements of the
diagonal submatrices K11

m,k and K22
m,k approach constant values,

also given in Appendix B. In this case, the structure of the local
stiffness matrix has the form

�K11
*,k 0

0 K22
*,k 
 = �

k11
* k12

* k13
* 0 0 0

k12
* k22

* k23
* 0 0 0

k13
* k23

* k33
* 0 0 0

0 0 0 k11
* − k12

* − k13
*

0 0 0 − k12
* k22

* k23
*

0 0 0 − k13
* k23

* k33
*

�
k

�24�

which indicates decoupling of the top and bottom surface traction
harmonics in the kth layer.

In the case of �transversely� isotropic and orthotropic plies, cou-
pling between in-plane and out-of-plane displacement harmonics
vanishes and the elements k13

m ,k23
m ,k16

m ,k26
m ,k36

m and their limiting
counterparts k13

* ,k23
* ,k16

* ,k26
* ,k36

* become zero. The nonvanishing
elements of the local stiffness matrix for these two cases are also
given in Appendix B.

3.3 Global Stiffness Matrix for the Layered Medium. The
assembly of the global stiffness matrix is carried out by applying
interfacial traction and displacement continuity conditions at each
interface. We start at the top surface �called the first interface� and
proceed to the bottom surface, using the relations between inter-
facial tractions and displacements given in terms of the local stiff-
ness matrix elements in Eq. �22�.
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Ply interface Individual Traction Equations Resultant Traction Equations

1+ T̄1
m+ = K11

m,1Ū1
m+ + K12

m,1Ū1
m− K11

m,1Ū1
m+ + K12

m,1Ū1
m− = T̄1

m+

· · ·

�k − 1�− T̄k−1
m− = K21

m,k−1Ūk−1
m+ + K22

m,k−1Ūk−1
m− K21

m,k−1Ūk−1
m+ + K22

m,k−1Ūk−1
m− +

k+ T̄k
m+ = K11

m,kŪk
m+ + K12

m,kŪk
m− K11

m,kŪk
m+ + K12

m,kŪk
m− = 0

· · ·

n− T̄n
m− = K21

m,nŪn
m+ + K22

m,nŪn
m− K21

m,nŪn
m+ + K22

m,nŪn
m− = T̄n

m−

�25�

The resultant traction equilibrium equations are generated for the
interfaces k=2, . . . ,n by imposing the equilibrium requirement �or
traction continuity condition�

T̄k−1
m− + T̄k

m+ = 0 �26�

For uncracked plies, the displacement continuity condition re-
quires that

Ūk−1
m− − Ūk

m+ = 0 �27�

Thus the displacement continuity conditions for uncracked plies
can be incorporated directly into the global system of equations by
defining the common interfacial displacement vector at the kth
uncracked interface as

Ūk−1
m− = Ūk

m+ = Ūk
m �28�

For cracked plies, the traction continuity conditions at the
cracked �th interface separating �−1 and � plies still hold, but
the displacement continuity conditions must be modified to ac-
count for the interfacial separations or displacement jumps asso-
ciated with the cracks present along such an interface. We do so
by defining the mth harmonic of the displacement discontinuity
vector

Ū�−1
m− − Ū�

m+ = Ū�
m* �29�

Using the above definition, and examining the limiting behavior
of the resultant traction equilibrium equations

K21
m,�−1Ū�−1

m+ + K22
m,�−1Ū�−1

m− + K11
m,�Ū�

m+ + K12
m,�Ū�

m− = 0 �30�

as m→� for the �th cracked interface given the limiting proper-
ties of the local stiffness submatrices K21

*,�−1 ,K22
*,�−1 ,K11

*,� ,K12
*,�,

the mth harmonics of the displacement vectors Ū�−1
m− and Ū�

m+ can
be expressed in terms of the mth harmonics of the common inter-

facial displacement vector Ū�
m and the displacement discontinuity

vector Ū�
m* as follows

Ū�−1
m− = Ū�

m + �K*,��−1K11
*,�Ū�

m*

Ū�
m+ = Ū�

m − �K*,��−1K22
*,�−1Ū�

m* �31�
where

�K*,��−1 = �K22
*,�−1 + K11

*,��−1 �32�

The above representation of the mth harmonic of the interfacial
displacement vector along interfaces separating cracked plies al-
lows us to express the global system of equations for an n-layered
media with multiple interlaminar cracks as follows

�
K11

1 K12
1 · 0 0

K21
1 K22

1 + K11
2 0

·

· K21
k−1 K22

k−1 + K11
k K12

k

·

0 K22
n−1 + K11

n K12
n

0 0 · K21
n K22

n

�
m

�
Ū1

Ū2

·

Ūk

·

Ūn

Ūn+1

�
m

= �
T̄1

+

0

·

0

·

0

T̄n
−

�
m

− �
�=2

n �
·

0

L��−1��

L��

L��+1��

0

·

�
m

Ū�
m*, ��,� = 2, . . . ,n� �33�

where the submatrices of L��−1��
m ,L��

m ,L��+1��
m assume the follow-

ing nonzero expressions for �=� only

L��−1��
m = K12

m,�−1�K*,��−1K11
*,�

L��
m = K22

m,�−1�K*,��−1K11
*,� − K11

m,��K*,��−1K22
*,�−1

L��+1��
m = − K21

m,��K*,��−1K22
*,�−1 �34�

Symbolically, the previous system of equations can be represented
by

KmŪm = T̄m − LmŪm* �35�

where Km denotes 3�n+1�
3�n+1� banded and symmetric glo-

bal stiffness matrix, Ūm represents the unknown common interfa-

cial displacement vector of length 3�n+1�, T̄m is the prescribed
interfacial traction vector of length 3�n+1�, Lm is the 3�n+1�

3�n−1� matrix containing dimensions and material properties of

layers adjacent to cracks, and Ūm* represents the displacement
discontinuity vector of length 3�n−1�. Equation �35� assumes the
most general case that all interfaces are cracked. If an interface is

uncracked, say the �th interface, we simply set Ū�
m*=0.
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4 Determination of the Displacement Discontinuity
Functions

Given the external loading represented by the mth harmonic T̄m

of the force vector, the solution for the mth harmonic of the com-

mon interfacial displacement vector Ūm in the absence of interfa-

cial cracks, Ūm*=0, is obtained in a straightforward manner by
inverting the governing system of equations given by Eq. �35�.
The local displacement, strain, and stress fields can then be built
up one harmonic at a time from the knowledge of the interfacial
displacement harmonics by solving this system of equations suf-
ficient number of times required for convergence. In the presence
of interfacial cracks, the additional displacement discontinuity

functions represented by the harmonics Ūm* must be determined
from additional conditions involving the specification of tractions
on the crack faces. For the �th interface containing a specified
number of cracks, the mth harmonic of the traction vector on the
top surface of the �th ply is obtained from Eq. �25�, upon setting
k=�, in the form

T̄�
m+ = K11

m,�Ū�
m+ + K12

m,�Ū�
m− �36�

Substituting for Ū�
m+ and Ū�

m− using Eq. �31�, and separating the
singular contributions, i.e., contributions which do not vanish as
m→�, we obtain the following expression for the mth harmonic
of the traction vector along the cracked �th interface

T̄�
m+ = K11

m,�Ū�
m + K12

m,�Ū�+1
m − K11

*,��K*,��−1K22
*,�−1Ū�

m*

− K̄11
m,��K*,��−1K22

*,�−1Ū�
m* + K12

m,��K*,�+1�−1K11
*,�+1Ū�+1

m*

�37�

where K̄11
m,�=K11

m,�−K11
*,� so that K̄11

m,�→0 as m→�. These equa-
tions can be expressed solely in terms of the mth harmonics of the
displacement discontinuity functions along all cracked interfaces
and external loading by solving for the common interfacial dis-

placements Ū�
m and Ū�+1

m . Inverting symbolically the governing
system of equations, Eq. �35�, we express the unknown interfacial

displacement harmonics Ūm in terms of external traction boundary
conditions and unknown displacement discontinuities as follows

Ūm = �Km�−1T̄m − GmŪm* �38�

where Gm= �Km�−1Lm. The solutions for Ū�
m and Ū�+1

m can be
extracted from the above general solution in the form

Ū�
m = �Km��1

−1T̄1
m+ + �Km���n+1�

−1 T̄n
m− − �

�=2

n

G��
m Ū�

m*

Ū�+1
m = �Km���+1�1

−1 T̄1
m+ + �Km���+1��n+1�

−1 T̄n
m− − �

�=2

n

G��+1��
m Ū�

m*

�39�

Therefore, the mth harmonic of the traction on the top surface of
the �th layer is expressed solely in terms of externally applied
tractions and unknown displacement discontinuities

T̄�
m+ = − B�

*Ū�
m* − �

�=2

n

A��
m Ū�

m* + F1�
m T̄1

m+ + Fn�
m T̄n

m− �40�

where

A��
m = K11

m,�G��
m + K12

m,�G��+1��
m + K̄11

m,��K*,��−1K22
*,�−1���

− K12
m,��K*,�+1�−1K11

*,�+1���+1��

B�
* = K11

*,��K*,��−1K22
*,�−1

F1�
m = K11

m,��Km��1
−1 + K12

m,��Km���+1�1
−1

Fn�
m = K11

m,��Km���n+1�
−1 + K12

m,��Km���+1��n+1�
−1 �41�

and where ��� is the Kronecker delta.
The above equations apply to both the horizontally pinned and

vertically pinned ends. Summing up all the harmonics of the trac-
tion vector on the cracked �th interface, Eq. �18� with z=h� /2,
the traction vector itself becomes

T�	x,
h�

2

 = T̄�

0 + �
m=1

�
m�

L
�m�x�T̄�

m+ �42�

where the elements of T̄�
0 are given by Eq. �20� for horizontally

and vertically pinned ends,

�
m=1

�
m�

L
�mT̄�

m+ = − �
m=1

�
m�

L
�mB�

*Ū�
m* − �

m=1

�
m�

L
�m�

�=2

n

A��
m Ū�

m*

+ �
m=1

�
m�

L
�m�F1�

m T̄1
m+ + Fn�

m T̄n
m−� �43�

and the matrix �m remains the same as before for both pinned
cases.

4.1 Integral Form of the Displacement Discontinuities. In
order to reduce the expression for the traction vector on the top
surface of the �th ply acting on the face of the pth crack in the
interval c�

�p�
�x�d�

�p�, Eq. �42�, to a system of integral equations,
we introduce displacement discontinuity density vector ��

�p� in the
following manner

U�−1
−�p��x� − U�

+�p��x� = U�
*�p��x� =

�
c�

�p�

x

��
�p��x��dx� c�

�p� � x � d�
�p�

0 otherwise

�44�

with the constraint

�
c�

�p�

d�
�p�

��
�p��x��dx� = 0 �45�

where ��
�p� consists of displacement discontinuity density compo-

nents associated with the z, x, and y directions,

��
�p��x�� = ��z

�p��x��
�x

�p��x��
�y

�p��x��
�

�

�46�

The corresponding Fourier series representation of the crack
opening displacement U�

*�p��x� for the pth crack along the �th
cracked interface is then given by

U�
*�p��x� = �

m=1

�

�mŪ�
m*�p� where Ū�

m*�p� = �w̄m
*�p�

ūm
*�p�

v̄m
*�p� �

�

�47�

Therefore, the mth harmonic Ū�
m*�p� of the crack opening displace-

ment U�
*�p��x� is obtained in terms of the components of the dis-

placement discontinuity density vector ��
�p��x�� by multiplying the

above equation by the appropriate orthogonal harmonic and inte-
grating the result along the crack interval. For both horizontally

and vertically pinned ends, Ū�
m*�p� can be written symbolically as

follows
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Ū�
m*�p� =

2

m�
�

c�
�p�

d�
�p�

�̂m��
�p��x��dx� �48�

where for the horizontally pinned ends,

�̂m = �
− sin	m�x�

L

 0 0

0 cos	m�x�

L

 0

0 0 cos	m�x�

L

 � �49�

which is actually the same as �m for the vertically pinned case.
Similarly, for the vertically pinned ends,

�̂m = − �
cos	m�x�

L

 0 0

0 sin	m�x�

L

 0

0 0 sin	m�x�

L

 � �50�

which is actually the same as −�m for the horizontally pinned case.

The mth harmonic Ū�
m* of the crack opening displacement for

all cracks along the �th cracked interface appearing in Eq. �43� is
then obtained by summing up all contributions from each crack as
follows

Ū�
m* = �

p=1

P���

Ū�
m*�p� �51�

4.2 Reduction of Crack-Face Traction Condition to Singu-
lar Integral Equations. The integral representation of the crack
opening displacement for the pth crack along the �th interface
using the displacement discontinuity density vector ��

�p��x�� al-
lows us to express the crack face traction condition in the interval
c�

�p�
�x�d�

�p� in terms of this unknown vector as follows

T�	x,
h�

2

 = −

2

L�
m=1

�

�mB�
*�

p=1

P���

�
c�

�p�

d�
�p�

�̂m��
�p��x��dx�

−
2

L�
m=1

�

�m�
�=2

n

A��
m �

q=1

Q���

�
c�

�q�

d�
�q�

�̂m��
�q��x��dx�

+ �
m=1

�
m�

L
�m�F1�

m T̄1
m+ + Fn�

m T̄n
m−� + T̄�

0 �52�

using Eqs. �42� and �43�, where the components of T��x ,h� /2�
are specified �typically either zero or constant�. The first term on
the right hand side of this system of three-coupled integral equa-
tions,

−
2

L�
m=1

�

�mB�
*�

p=1

P���

�
c�

�p�

d�
�p�

�̂m��
�p��x��dx� �53�

reduces to a singular integral with a Cauchy-type kernel, as shown
in the sequel, while the remaining two terms

−
2

L�
m=1

�

�m�
�=2

n

A��
m �

q=1

Q���

�
c�

�q�

d�
�q�

�̂m��
�q��x��dx�,

�
m=1

�
m�

L
�m�F1�

m T̄1
m+ + Fn�

m T̄n
m−� + T̄�

0 �54�

are regular, with the elements of A��
m , F1�

m , and Fn�
m vanishing in

the limit as m→�.

4.2.1 Extraction of the Singular Kernel. The extraction of the
Cauchy-type kernel from the first term forms the key step in the
reduction of the crack-face traction condition to a system of sin-
gular integral equations. It is carried out by first expressing the
four summations below, which appear in the integrals associated
with the components of ��

�p��x�� in Eq. �53�, as follows

�
m=1

�

sin	m�x

L

cos	m�x�

L

 =

1

2�m=1

�

sin
m��x + x��

L

+
1

2�m=1

�

sin
m��x − x��

L

�
m=1

�

cos	m�x

L

sin	m�x�

L

 =

1

2�m=1

�

sin
m��x + x��

L

−
1

2�m=1

�

sin
m��x − x��

L

�
m=1

�

sin	m�x

L

sin	m�x�

L

 = −

1

2�m=1

�

cos
m��x + x��

L

+
1

2�m=1

�

cos
m��x − x��

L

�
m=1

�

cos	m�x

L

cos	m�x�

L

 =

1

2�m=1

�

cos
m��x + x��

L

+
1

2�m=1

�

cos
m��x − x��

L
�55�

The products on the left hand side of the above equations are the
four different combinations obtained by multiplying the elements

of the matrices �m and �̂m that appear in the first term �and others�.
The four summations on the right hand side of the above equa-
tions are then transformed such that known identities can be ap-
plied in order to extract the singular contributions, as shown in
detail in Appendix C. Summarizing these manipulations, the inte-
grals in Eq. �53� become

�
c�

�p�

d�
�p�

�
m=1

�

sin	m�x

L

cos	m�x�

L

��·��

�p� �x��dx�

=�
c�

�p�

d�
�p� 	−

L

2�

1

x� − x
+ 
�x�,x�
��·��

�p� �x��dx�

�
c�

�p�

d�
�p�

�
m=1

�

cos	m�x

L

sin	m�x�

L

��·��

�p� �x��dx�

=�
c�

�p�

d�
�p� 	 L

2�

1

x� − x
+ 
�x,x��
��·��

�p� �x��dx�
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�
c�

�p�

d�
�p�

�
m=1

�

sin	m�x

L

sin	m�x�

L

��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

L

2
· ��x − x����·��

�p� �x��dx�

�
c�

�p�

d�
�p�

�
m=1

�

cos	m�x

L

cos	m�x�

L

��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

L

2
· ��x − x����·��

�p� �x��dx� �56�

where the function 
�x ,x�� is given below


�x,x�� =
1

4
cot

��x + x��
2L

−
x − x�

4�L �
n=1

�
1

	 x − x�

2L

2

− n2

�57�

and 0�x /L ,x� /L�1. We note that the sequence of x ,x� in our
definition of 
�x ,x�� matters, i.e., 
�x ,x���
�x� ,x�.

Explicit expressions for the three terms in the system of singu-
lar integral equations that represent the crack-face traction condi-
tion for the horizontally pinned and vertically pinned ends, Eq.
�52�, are given in the next subsection.

4.2.2 Singular Integral Equations. Using the results obtained
in the preceding section to separate the singular and nonsingular
kernel contributions in the integrals appearing in Eq. �52�, the
crack-face traction condition for the pth crack in the interval
c�

�p�
�x�d�

�p� along the �th interface can be expressed as a system
of singular integral equations with Cauchy-type kernels using the
same symbolic notation as that of Eq. �1�, repeated here for con-
venience

T�	x,
h�

2

 = Ā�

*��
�p��x� +

1

�
�

c�
�p�

d�
�p�

B̄�
* ��

�p��x��
x� − x

dx�

+
1

��
�=2

n

�
q=1

Q���

�
c�

�q�

d�
�q�

K̄���x,x����
�q��x��dx� + F��x�

�58�

The summation on �=2, . . . ,n includes crack interactions on dif-
ferent interfaces. For both horizontally and vertically pinned ends,

the structure of the matrices Ā�
* and B̄�

* is the same, namely

Ā�
* = � 0 − B12

*� − B13
*�

B12
*� 0 0

B13
*� 0 0

�, B̄�
* = �B11

*� 0 0

0 B22
*� B23

*�

0 B23
*� B33

*� � �59�

where Ā�
* and B̄�

* involve only material properties of the adjacent
layers. The individual elements Bij

*� that populate these two ma-
trices are obtained from B�

* in Eqs. �41� in terms of the products
of the asymptotic values of the stiffness matrix elements of the
adjacent plies separated by the �th interface. The elements of the

matrix K̄�� and the force vector F��x� depend on the manner of
end support.

For the horizontally pinned ends, the elements of K̄�� are

K̄11
�� =

2�

L
	�11

�� + 	
�x,x�� +
L

2�

1 − �pq

x� − x

���B11

*�

K̄1j

�� =
2�

L
�1j

��

K̄i1
�� =

2�

L
�i1

��

K̄ij
�� =

2�

L
	�ij

�� + 	− 
�x�,x� +
L

2�

1 − �pq

x� − x

���Bij

*�
 �60�

where

�11
�� = �

m=1

�

A11
m����cos	m�x

L

sin	m�x�

L



�1j
�� = �

m=1

�

�− A1j
m�����cos	m�x

L

cos	m�x�

L



�i1
�� = �

m=1

�

Ai1
m����sin	m�x

L

sin	m�x�

L



�ij
�� = �

m=1

�

�− Aij
m�����sin	m�x

L

cos	m�x�

L

 �61�

for i , j=2,3, and the elements Aij
m���� are obtained by inverting the

global stiffness matrix, as shown in Eq. �41�. The terms in Aij
m����

account for crack interactions due to cracks situated on different
interfaces. The functions 
�x ,x�� and 
�x� ,x� describe crack-
vertical boundary interactions caused by the constraints of the
right and left ends �this type of interaction is the same as one
arising from two collinear cracks if one imagines another crack
located symmetrically across the layered medium’s vertical
boundary due to the chosen Fourier series displacement represen-
tation�. The term �1−�pq� / �x�−x� represents the effect of collinear
crack interactions on the current pth crack by the qth crack situ-
ated on the same interface.

The load vector F��x� is given by

F��x� = ��̄zz�
0

0

0
� + �

m=1

� �
cos	m�x

L

�F11,1

m����̄zz1
m+ − F11,n

m����̄zzn
m−�

sin	m�x

L

�F21,1

m����̄zz1
m+ − F21,n

m����̄zzn
m−�

sin	m�x

L

�F31,1

m����̄zz1
m+ − F31,n

m����̄zzn
m−�

�
�62�

when only normal traction loading is applied on the top and bot-
tom surfaces of the layered media. This loading is represented by
half-range Fourier cosine expansions with the constant and fluc-
tuating contributions denoted by �̄zz�

0 and �̄zz1
m+, �̄zzn

m−, respectively.
If only internal crack pressure is applied, F��x�=0.

For the vertically pinned ends, the elements of the matrix K̄��
are

K̄11
�� =

2�

L
	�11

�� + 	− 
�x�,x� +
L

2�

1 − �pq

x� − x

���B11

*�

K̄1j

�� =
2�

L
�1j

��

K̄i1
�� =

2�

L
�i1

��

K̄ij
�� =

2�

L
	�ij

�� + 	
�x,x�� +
L

2�

1 − �pq

x� − x

���Bij

*�
 �63�

where
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�11
�� = �

m=1

�

�− A11
m�����sin	m�x

L

cos	m�x�

L



�1j
�� = �

m=1

�

�− A1j
m�����sin	m�x

L

sin	m�x�

L



�i1
�� = �

m=1

�

Ai1
m����cos	m�x

L

cos	m�x�

L



�ij
�� = �

m=1

�

Aij
m����cos	m�x

L

sin	m�x�

L

 �64�

for i , j=2,3.
The load vector F��x� is given by

F��x� = �
m=1

� �
− sin	m�x

L

�F11,1

m����̄zz1
m+ − F11,n

m����̄zzn
m−�

cos	m�x

L

�F21,1

m����̄zz1
m+ − F21,n

m����̄zzn
m−�

cos	m�x

L

�F31,1

m����̄zz1
m+ − F31,n

m����̄zzn
m−�

� �65�

when only normal traction loading is applied on the top and bot-
tom surfaces of the layered media. The half-range Fourier sine
expansion ensures that the zeroth order harmonic of constant nor-
mal traction is 0. As before, F��x�=0 is employed when only
internal pressure is applied.

5 Solution of Singular Integral Equations
The system of equations defined by Eq. �58� is solved by the

method proposed by Erdogan et al. �33�. The dominant system
consisting of the Cauchy-type integrals and the free terms

Ā�
*��

�p��x� is first diagonalized and then expressed in normalized
form with respect to each crack interval. Let

��
�p��x� = R�

*��
�p��x� �66�

to diagonalize the singular integral equations. This procedure
yields

g��x� + R�
*−1B̄�

*−1T�
+�x� = ����

�p��x� +
1

�
�

c�
�p�

d�
�p�

��
�p��x��

x� − x
dx�

+
1

��
�=2

n

�
q=1

Q���

�
c�

�q�

d�
�q�

h���x,x����
�q��x��dx�

�67�

where

�� = R�
*−1B̄�

*−1Ā�
*R�

*

g��x� = − R�
*−1B̄�

*−1F��x�

h���x,x�� = R�
*−1B̄�

*−1K̄��R�
* �68�

and �� and R�
* are diagonal and modal matrices, respectively,

determined from the associated eigenvalue-eigenvector problem;
see Appendix D. Then, let x�= 1

2 �d�
�q�−c�

�q����
�q�+ 1

2 �d�
�q�+c�

�q�� and
x= 1

2 �d�
�p�−c�

�p��t�
�p�+ 1

2 �d�
�p�+c�

�p�� to normalize the singular integral
equations as follows

g��t�
�p�� + R�

*−1B̄�
*−1T�

+�t�
�p��

= ����
�p��t�

�p�� +
1

�
�

−1

+1
��

�p����
�p��

��
�p� − t�

�p� d��
�p� +

1

��
�=2

n

�
q=1

Q���

d�
�q� − c�

�q�

2


�
−1

+1

h���t�
�p�,��

�q����
�q����

�q��d��
�q� �69�

The solution to the above diagonalized and normalized system
of equations can be expressed as the product of so-called funda-
mental function ���t� reflecting the nature of the problem’s sin-
gularity and some function that is bounded at t= ±1, where

���t� = �1 − t�a��1 + t�b� �70�

a�=�− 1
2 ,− 1

2 + i�� ,− 1
2 − i���T, b� is the complex conjugate of a�,

and ��= �1/2��log����+1� / ���−1��. Since the fundamental
function ���t� is the weight of Jacobi polynomials, it is advanta-
geous to expand the bounded function in Jacobi polynomials with
unknown coefficients and the resulting representation of
��

�p��t�
�p�� is

��
�p��t�

�p�� = ���t�
�p���

j=0

�

C j���
�p� Pj

�a�,b���t�
�p�� �71�

where C j���
�p� = �C1,j���

�p� C2,j���
�p� C3,j���

�p� �T is the unknown influence co-

efficient vector.
In order to reduce the three coupled integral equations govern-

ing the crack opening displacements to a system of algebraic
equations, we first substitute the above series representation of
��

�p��t�
�p�� into Eq. �69� and employ the Jacobi polynomial identity

��Pj
�a�,b���t�

�p�����t�
�p�� +

1

i��−1

+1
Pj

�a�,b���t�
�p�������

�p��
��

�p� − t�
�p� d��

�p�

=
�1 − ��

2

2i
Pj−1

�−a�,−b���t�
�p�� �72�

to reduce the first two terms to a single summation in
Pj

�−a�,−b���t�
�p��. Multiplying both sides of the resulting reduced

equation by �̂��t�
�p��Pj

�−a�,−b���t�
�p�� and taking advantage of the

orthogonality of Jacobi polynomials Pj
�−a�,−b���t�

�p��

�
−1

+1

�̂��t�
�p��Pi

�−a�,−b���t�
�p��Pj

�−a�,−b���t�
�p��dt�

�p� =
� j

�−a�,−b�� for i = j

0 for i � j

�73�

where the weight functions �̂��t� are

�̂��t� = �1 − t�−a��1 + t�−b� �74�

and

� j
�−a�,−b�� =

2��j + 1 − a����j + 1 − b��
j ! �j + 1���j + 2�

�75�

the singular integral equations are reduced to the algebraic system
of equations in the unknown coefficients C j���

�p�

�

2
�1 − ��

2� j
�−a�,−b��C�j+1����

�p� + �
�=2

n

�
q=1

Q���

�
k=0

Nj �d�
�q� − c�

�q��
2

D jk����
�pq� Ck���

�q�

= G j���
I�p� + G j���

II�p� �76�

where ��·� is a gamma function and ! denotes factorial in Eq. �75�,
and j=0,1 ,2 , . . . ,Nj. The constant matrices and vectors D jk����

�pq� ,

G j���
I�p� , G j���

II�p� are given below
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D jk����
�pq� =�

−1

+1 ��
−1

+1

h���t�
�p�,��

�q��Pj
�−a�,−b���t�

�p���̂��t�
�p��dt�

�p�


 Pk

�a�,b�����
�q�������

�q��d��
�q�

G j���
I�p� = −�

−1

+1

R�
*−1B̄�

*−1F��t�
�p��Pj

�−a�,−b���t�
�p���̂��t�

�p��dt�
�p�

G j���
II�p� =�

−1

+1

R�
*−1B̄�

*−1T�
+�t�

�p��Pj
�−a�,−b���t�

�p���̂��t�
�p��dt�

�p� �77�

The solution of the above system of equations is accomplished
numerically. In practice, the series in Eq. �76� is truncated after
the first Nj terms that must be large enough to yield accurate
results. The size of the system of algebraic equations is 3
 �Nj

+1�
��=2
n P���. Numerical aspects of determining the coefficients

given in Eq. �77� are discussed in Part II of this paper.

6 Strain Energy Release Rates and Stress Intensity
Factors

Once the coefficients C j���
�p� of the Jacobi polynomials associated

with the various cracks are known, the displacement discontinui-
ties and thus tractions �and stresses� in the vicinity of crack tips
can be evaluated. The energy release rates and stress intensity
factors follow directly from the knowledge of the above quanti-

ties. Herein, we derive these quantities for the case Ā�
* =0, that is

B12
*�=B13

*�=0, which results in ��=0. In this case, the Jacob poly-
nomials Pj

�−a�,−b�� reduce to Chebyshev polynomials of the first
kind Tj since a�=b�=�− 1

2 ,− 1
2 ,− 1

2
�T. This is the case when the

crack is situated between two layers of the same elastic properties,
thereby sidestepping the problem of oscillatory crack-tip stress
fields that has commanded much attention and effort by a number
of researchers, cf. Wang and Choi �42,43�, as discussed by Ting
�44�.

The strain energy release rate caused by an infinitesimal crack
extension of the pth crack along the �th interface under self-
similar crack growth is calculated by evaluating the integral given
later

�U�
�p�

�a
= lim

�→0

1

�

1

2�
±1

±1±�� �d�
�p� − c�

�p��
2

T�
+�t�

�p�� � U�
*�t��

�p��dt�
�p�

�78�

where the symbol � denotes dot product operation, ± denotes the
right or left tip of the crack, t��

�p�= t�
�p�−2� / �d�

�p�−c�
�p��, and ��

=2� / �d�
�p�−c�

�p��. In the above expression it is sufficient to con-
sider only the limiting values of the traction T�

+�t�
�p�� and crack

opening displacement U�
*�t�

�p�� at each crack location in the neigh-
borhood of t�

�p�= ±1.
The expression for the crack-opening displacement inside the

pth crack along the �th interface, �t�
�p� � �1, is given by

U�
*�t�

�p�� =
�d�

�p� − c�
�p��

2 �
−1

t�
�p�

��
�p����

�p��d��
�p� =

�d�
�p� − c�

�p��
2 �

−1

t�
�p�

�1

− ��
�p��−1/2�1 + ��

�p��−1/2�
j=0

�
�2j�!

22j�j ! �2C j���
�p� Tj���

�p��d��
�p�

�79�

In the vicinity of the right crack tip, the above integral is governed
by the dominant part of the kernel, yielding

U�
*�t�

�p�� =
�d�

�p� − c�
�p��

2
�1 − t�

�p��1/2 2
�2

�
j=0

�
�2j�!

22j�j ! �2C j���
�p� �80�

using a result from the complex variable theory and Tj�1�=1.
Similarly, for the same pth crack along the �th interface, the
dominant or singular part of the stress field ahead of the crack tip
obtained from Eq. �58� is given by

T�
+�t�

�p�� �
B̄�

*

�
�

−1

+1
��

�p����
�p��

��
�p� − t�

�p� d��
�p�

=
B̄�

*

� �
j=1

�
�2j�!

22j�j ! �2C j���
�p� �

−1

+1



Tj���

�p���1 − ��
�p��−1/2�1 + ��

�p��−1/2

��
�p� − t�

�p� d��
�p� �81�

Using a result from the complex variable theory, the asymptotic
behavior of this integral in the vicinity of the right crack tip for
�t�

�p� � �1 becomes

T�
+�t�

�p�� = − �t�
�p� − 1�−1/2B̄�

* 1
�2

�
j=0

�
�2j�!

22j�j ! �2C j���
�p� �82�

The asymptotic expressions for the displacement and traction
fields in the vicinity of the right crack tip contain common sum-
mations that are defined in the manner given below

−
1
�2

�
j=0

�
�2j�!

22j�j ! �2C j���
�p� = �A�

�p�,B�
�p�,C�

�p��T �83�

Using this definition in the asymptotic expressions for the crack-
tip tractions and displacements in the integral for the strain energy
release rate, and separating the three contributions, we obtain the
following integrals for the energy release rate due to the opening
mode

�UI�
�p�

�a
= lim

�→0

1

�

�d�
�p� − c�

�p��2

4
B11

*��A�
�p��2


�
1

1+��
�t�

�p� − 1�−1/2�1 − t��
�p��1/2 dt�

�p�

the sliding mode

�UII�
�p�

�a
= lim

�→0

1

�

�d�
�p� − c�

�p��2

4
�B22

*�B�
�p� + B23

*�C�
�p��B�

�p�


�
1

1+��
�t�

�p� − 1�−1/2�1 − t��
�p��1/2 dt�

�p�

and the tearing mode

�UIII�
�p�

�a
= lim

�→0

1

�

�d�
�p� − c�

�p��2

4
�B23

*�B�
�p� + B33

*�C�
�p��C�

�p�


�
1

1+��
�t�

�p� − 1�−1/2�1 − t��
�p��1/2 dt�

�p�

Evaluating the above integrals using the following identity de-
rived from the definition of beta function, B�x ,y�=�0

1tx�1
− t�y−1 dt, Gradsheteyn and Ryzhik ��45�, p. 898�
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�
1

1+2�/�d�
�p�−c�

�p��
�t�

�p� − 1�−1/2�1 − t�
�p� − 2�/�d�

�p� − c�
�p���1/2 dt�

�p�

=
��

d�
�p� − c�

�p� �84�

the following expressions for the strain energy release rates cor-
responding to each mode at the right crack tip are obtained

�UI�
�p�

�a
=

�

4
�d�

�p� − c�
�p��B11

*��A�
�p��2

�UII�
�p�

�a
=

�

4
�d�

�p� − c�
�p���B22

*�B�
�p� + B23

*�C�
�p��B�

�p�

�UIII�
�p�

�a
=

�

4
�d�

�p� − c�
�p���B23

*�B�
�p� + B33

*�C�
�p��C�

�p� �85�

The corresponding energy release rates at the left tip are obtained
by evaluating the Chebyshev coefficient sums in Eqs. �83� at t�

�p�

=−1 instead of t�
�p�= +1.

The stress intensity factors are obtained by multiplying the
asymptotic expressions of crack-tip tractions by either �t�

�p�−1�1/2

for the right tip or by �−1− t�
�p��1/2 for the left tip, and then taking

the limit of these equations as t→ ±1. Taking this limit at the right
tip, t�

�p�=1, in Eq. �82�, the stress intensity factors become

KI�
�p� = B11

*�A�
�p�

KII�
�p� = B22

*�B�
�p� + B23

*�C�
�p�

KIII�
�p� = B23

*�B�
�p� + B33

*�C�
�p� �86�

with similar expressions at the left tip.

7 Summary and Conclusions
A unified solution methodology has been developed for finite-

dimensioned multilayered media laminated with �transversely�
isotropic, orthotropic, and monoclinic plies containing arbitrarily
distributed interacting cracks in a state of generalized plane defor-
mation under two types of end constraints that mimic vertical and
horizontal pins. Using the local/global stiffness matrix approach in
the Fourier harmonic parameter domain, the mixed boundary-
value problem has been reduced to the standard system of coupled
singular integral equations for the crack opening displacements
previously obtained by several investigators in the Fourier trans-
form domain when the horizontal dimension of the layered me-
dium is infinite. Explicit expressions for the elements of the local
stiffness matrix and the singular and regular kernels associated
with the crack opening displacements have been developed in the
Fourier harmonic parameter domain that can easily be pro-
grammed. These kernels account for all crack interactions from
cracks resident on every cracked interface, as well crack-vertical
boundary interactions absent in the corresponding Fourier trans-
form formulation.

Expressions for strain energy release rates and stress intensity
factors have been developed based on the obtained solution that
will be first verified in Part II of this paper, and then employed in
several technologically significant applications for the first time.
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Appendix A: Solutions to Navier’s equations
The solutions for the displacement field in monoclinic, ortho-

tropic, and �transversely� isotropic layers are obtained by substi-
tuting the assumed functions given in Eqs. �12�–�15� in the Navi-
er’s equations and applying orthogonality of a Fourier series. The
zeroth-order, m=0, solutions to the Navier’s equations for the
horizontally and vertically pinned cases, Eqs. �14� and �15�, re-
spectively, are linear functions of the coordinate z as shown below

w̄0�z� = A30 + B30z, ū0�z� = A10 + B10z, v̄0�z� = A20 + B20z

For harmonics greater than zero, m�0, the solutions for the dis-
placement field in monoclinic, orthotropic, and �transversely� iso-
tropic layers are given below.

A.1 Monoclinic Layers

w̄m�z� = �
j=1

3

Rj	Gj cosh	m�

L
	 jz
 + Fj sinh	m�

L
	 jz



ūm�z� = �
j=1

3 	Fj cosh	m�

L
	 jz
 + Gj sinh	m�

L
	 jz



v̄m�z� = �
j=1

3

Lj	Fj cosh	m�

L
	 jz
 + Gj sinh	m�

L
	 jz



where Fj, Gj, are the unknown eigenvectors, the coefficients Li, Ri
are

Li =
�C̄11 − C̄55	i

2��C̄36 + C̄45� − �C̄16 − C̄45	i
2��C̄13 + C̄55�

�C̄45	i
2 − C̄16��C̄36 + C̄45� − �C̄44	i

2 − C̄66��C̄13 + C̄55�

Ri = −
�C̄45	i

2 − C̄16��C̄45	i
2 − C̄16� − �C̄44	i

2 − C̄66��C̄55	i
2 − C̄11�

�C̄45	i
2 − C̄16��C̄36 + C̄45� − �C̄44	i

2 − C̄66��C̄13 + C̄55�

1

	i

and the eigenvalues 	 j are obtained from the characteristic equa-
tion A	6+B	4+C	2+D=0, where

A = C̄33�C̄44C̄55 − C̄45
2 �

B = C̄44�C̄11C̄33 − C̄13
2 � + C̄55�C̄33C̄66 − C̄36

2 �

− 2C̄45�C̄16C̄33 − C̄13C̄36� − 2C̄13�C̄44C̄55 − C̄45
2 �

C = �C̄36 + 2C̄45��C̄11C̄36 − C̄13C̄16� + �C̄13 + 2C̄55��C̄13C̄66

− C̄16C̄36� − C̄11�C̄44C̄55 − C̄45
2 � − C̄33�C̄11C̄66 − C̄16

2 �

D = C̄55�C̄11C̄66 − C̄16
2 �

Defining �=	2−B /3A, the characteristic equation is transformed
into the cubic form �3+e�+ f =0 with e=−B2 /3A2−C /A and f
=−2B3 /27A3−BC /3A2−D /A. Assuming that e3 /27+ f2 /4�0,
which is the case for most unidirectional composites, the equation
has three real and unequal roots � j =2�−e /3 cos�1/3��+2�j
−1����, j=1,2 ,3, with �=cos−1�−�27f /2�−e�3/2�. Therefore, the
three positive roots of the original equation are 	 j =�� j +B /3A.

A.2 Orthotropic Layers

w̄m�z� = �
j=1

2

Rj	Gj cosh	m�

L
	 jz
 + Fj sinh	m�

L
	 jz



ūm�z� = �
j=1

2 	Fj cosh	m�

L
	 jz
 + Gj sinh	m�

L
	 jz
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v̄m�z� = H1 cosh	m�

L
	3z
 + I1 sinh	m�

L
	3z


where the coefficients Ri are

Ri = −
C55	i

2 − C11

C13 + C55

1

	i

and the eigenvalues 	 j are obtained from the characteristic equa-
tions B	4+C	2+D=0 and 	2=C66/C44 where B=C33C55, C
=C13

2 −C11C33+2C13C55 and D=C11C55. If C2−4BD�0, which is
the case for most unidirectional composites, the first characteristic
equation has two positive real and unequal roots 	1,2

=��−C±�C2−4BD� /2B and the third positive root 	3

=�C66/C44 comes from the second characteristic equation.

A.3 Isotropic Layers

w̄m�z� = − ��G1 +
R1

m�

L

F2 + zG2�cosh	m�

L
z


+ �F1 +
R1

m�

L

G2 + zF2�sinh	m�

L
z
�

ūm�z� = �F1 + zF2�cosh	m�

L
z
 + �G1 + zG2�sinh	m�

L
z


v̄m�z� = H1 cosh	m�

L
z
 + I1 sinh	m�

L
z


where

R1 = −
3C33 − C12

C11 + C12

and the eigenvalues 	 j are obtained from the characteristic equa-
tions �	2−1�2=0 and 	2=1 whose three positive roots are 	1,2,3
=1.

Appendix B: Elements of Local Stiffness Matrix
The elements of local stiffness matrices for finite monoclinic,

orthotropic, and isotropic layers in Fourier expansion for general-
ized plane deformation are given below.

B.1 Monoclinic Layers

k11
m �k14

m � = A−
+�P1�L3 − L2� + P2�L1 − L3� + P3�L2 − L1��

k12
m �k15

m � = H−
+�P1L2 − P2L1�R3 + E−

+�P3L1 − P1L3�R2

+ F−
+�P2L3 − P3L2�R1

k13
m �k16

m � = H−
+�P2 − P1�R3 + E−

+�P1 − P3�R2

+ F−
+�P3 − P2�R1

k22
m �k25

m � = B−
+�T2R1 − T1R2�L3 + C−

+�T1R3 − T3R1�L2

+ D−
+�T3R2 − T2R3�L1

k23
m �k26

m � = B−
+�T1R2 − T2R1� + C−

+�T3R1 − T1R3� + D−
+�T2R3 − T3R2�

k33
m �k36

m � = B−
+�R2Q1 − R1Q2� + C−

+�R1Q3 − R3Q1�

+ D−
+�R3Q2 − R2Q3�

where the minus sign in the notation A−
+, etc., refers to the ele-

ments kij in the parentheses,

Pi = C̄13 + C̄33	iRi + C̄36Li, Qi = C̄44	iLi + C̄45�	i − Ri� ,

Ti = C̄45	iLi + C̄55�	i − Ri�

and

A−
+ =

1

2
	±

1

�1
+

t1t2t3

�2

, B−

+ =
1

2
	 t1t2

�1
±

t3

�2

, C−

+ = 	1

2

t1t3

�1
±

t2

�2



D−
+ =

1

2
	 t2t3

�1
±

t1

�2

, E−

+ =
1

2
	 t2

�1
±

t1t3

�2

, F−

+ =
1

2
	 t1

�1
±

t2t3

�2



H−
+ =

1

2
	 t3

�1
±

t1t2

�2



where

�1 = t3�L2 − L1�R3 + t2�L1 − L3�R2 + t1�L3 − L2�R1

�2 = t1t2�L2 − L1�R3 + t1t3�L1 − L3�R2 + t2t3�L3 − L2�R1

and ti=tanh��m� /L�	ih /2�, h is the kth ply thickness, L is the ply
half length, and m is the harmonic.

The asymptotic elements of the local stiffness matrix are:

k11
* =

1

�
�P1�L3 − L2� + P2�L1 − L3� + P3�L2 − L1��

k12
* =

1

�
��P1L2 − P2L1�R3 + �P3L1 − P1L3�R2 + �P2L3 − P3L2�R1�

k13
* =

1

�
��P2 − P1�R3 + �P1 − P3�R2 + �P3 − P2�R1�

k22
* =

1

�
��T2R1 − T1R2�L3 + �T1R3 − T3R1�L2 + �T3R2 − T2R3�L1�

k23
* =

1

�
��T1R2 − T2R1� + �T3R1 − T1R3� + �T2R3 − T3R2��

k33
* =

1

�
��R2Q1 − R1Q2� + �R1Q3 − R3Q1� + �R3Q2 − R2Q3��

where �= �L2−L1�R3+ �L1−L3�R2+ �L3−L2�R1.

B.2 Orthotropic Layers

k11
m �k14

m � = A−
+�P2 − P1�

k12
m �k15

m � = B−
+P1R2 − E−

+P2R1

k22
m �k25

m � = D−
+�T1R2 − T2R1�

k33
m �k36

m � = C−
+Q3

where Pi=−C13+C33	iRi, Ti=C55�	i+Ri�, Q3=C44	3, and

A−
+ =

1

2
	±

1

�1
+

t1t2

�2

, B−

+ =
1

2
	 t1t2

�1
±

1

�2

, C−

+ =
1

2
	t3 ±

1

t3



D−
+ =

1

2
	 t2

�1
±

t1

�2

, E−

+ =
1

2
	 t1

�1
±

t2

�2



where �1= t2R2− t1R1, �2= t1R2− t2R1, and ti
=tanh��m� /L�	ih /2�.

The asymptotic elements of the local stiffness matrix are:

k11
* =

P2 − P1

R2 − R1

k12
* =

P1R2 − P2R1

R2 − R1
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k22
* =

T1R2 − T2R1

R2 − R1

k33
* = Q3

B.3 Isotropic Layers

k11
m �k14

m � = A−
+P2

k12
m �k15

m � = D−
+P1 + E−

+P2

k22
m �k25

m � = B−
+�T1R1 − T2�

k33
m �k36

m � = C−
+Q3

where P1=C11−C12, P2=C11�1+R1�, Q3=C44, T1=2C55, T2
=C55�1+R1�, and

A−
+ =

1

2
	±

1

�1
+

t1
2

�2

 L

m�
, B−

+ =
1

2
	 t1

2

�1
±

1

�2

 L

m�
,

C−
+ =

1

2
	t1 ±

1

t1



D−
+ =

1

2
�1 ± 1�, E−

+ =
1

2
	 t1

�1
±

t1

�2

 L

m�

where �1=h�1− t1
2� /2+R1t1L /m�, �2=−h�1− t1

2� /2+R1t1L /m�,
and t1=tanh��m� /L�h /2�.

The asymptotic elements of the local stiffness matrix are:

k11
* = C11

1 + R1

R1

k12
* = C12 +

C11

R1

k22
* = k11

*

k33
* =

1

2
�C11 − C12�

Appendix C: Extraction of the Singular Kernel
The four summations on the right hand side of Eq. �55� are

transformed such that known identities given below, Gradsheteyn
and Ryzhik ��45�, p. 44�, valid for 0�x�2�, can be applied in
order to extract the singular contributions.

�
m=1

�
sin�mx�

m
=

� − x

2
, �

m=1

�
cos�mx�

m
=

1

2
log

1

2�1 − cos x�

We start with the summations involving the sum x+x� in Eq.
�55�. First, we rewrite the summation on sin�m� /L��x+x�� as fol-
lows

�
c�

�p�

d�
�p�

�
m=1

�

sin
m��x + x��

L
��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

−
d

dx�m=1

�
L

m�
cos

m��x + x��
L

��·��
�p� �x��dx�

Using the identity

�
m=1

�
L

m�
cos

m��x + x��
L

=
L

2�
log

1

2	1 − cos
��x + x��

L



which holds for 0� �� /L��x+x���2� and performing the re-
quired differentiation, we obtain

�
c�

�p�

d�
�p�

�
m=1

�

sin
m��x + x��

L
��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

1

2
cot

��x + x��
2L

��·��
�p� �x��dx�

where the kernel is nonsingular since 0� �� /L��x+x���2�. Ap-
plying the same procedure to the summation on cos�m� /L��x
+x��, we obtain

�
c�

�p�

d�
�p�

�
m=1

�

cos
m��x + x��

L
��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

d

dx�m=1

�
L

m�
sin

m��x + x��
L

��·��
�p� �x��dx�

=�
c�

�p�

d�
�p�

d

dx
	L − �x + x��

2

��·��

�p� �x��dx� = 0

in light of the constraint on ��
�p� given in Eq. �45�.

We follow a similar procedure for the summations involving the
difference x−x�. For the summation on sin�m� /L��x−x��, we
have

�
c�

�p�

d�
�p�

�
m=1

�

sin
m��x − x��

L
��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

1

2
cot

��x − x��
2L

��·��
�p� �x��dx�

in the interval −�� �� /L��x−x��� +�, which includes the cases
0� �� /L��x−x��� +� and −�� �� /L��x−x���0. The integral
on the right hand side contains a singular contribution of the form
L / �x−x�� which is extracted using the following expansion, Grad-
sheteyn and Ryzhik ��45�, p. 43�,

1

2
cot

��x − x��
2L

=
1

�

L

x − x�
+

1

2�

x − x�

L �
n=1

�
1

	 x − x�

2L

2

− n2

For the special case x−x�=0, we trivially obtain

�
c�

�p�

d�
�p�

�
m=1

�

sin
m��x − x��

L
��·��

�p� �x��dx� = 0

For the remaining summation on cos�m� /L��x−x��, we need to
consider three cases. In the interval 0�

�

L �x−x��� +� we have

�
c�

�p�

d�
�p�

�
m=1

�

cos
m��x − x��

L
��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

d

dx�m=1

�
L

m�
sin

m��x − x��
L

��·��
�p� �x��dx�

=�
c�

�p�

d�
�p�

d

dx
	L − �x − x��

2

��·��

�p� �x��dx� = 0

in light of the constraint on ��
�p� given in Eq. �45�. We obtain the

same result in the interval −�� �� /L��x−x���0,
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�
c�

�p�

d�
�p�

�
m=1

�

cos
m��x − x��

L
��·��

�p� �x��dx�

= −�
c�

�p�

d�
�p�

d

dx�m=1

�
L

m�
sin

m��− x + x��
L

��·��
�p� �x��dx�

=−�
c�

�p�

d�
�p�

d

dx
	L − �− x + x��

2

��·��

�p� �x��dx� = 0

The case x−x�=0 requires special attention because the sum on
cos�m� /L��x−x�� becomes infinite. In fact, the sum on
cos�m� /L��x−x�� behaves like the Dirac delta function since in a
small region around −x� /2�x0=x−x�� +x� /2 with x��0,

1

L�
c�

�p�

d�
�p�

�
m=1

�

cos
m��x − x��

L
d�x − x��

=
1

L
lim

x�→0
�

−x�/2

+x�/2

�
m=1

�

cos
m�x0

L
dx0

=
1

L
lim

x�→0
�
m=1

� sin
m�x�

2L

m�

2L

=
2

�
lim

x�→0

� −
�x�

2L

2
= 1

Therefore, the integral involving the sum cos�m� /L��x−x�� for
the case x−x�=0 becomes

�
c�

�p�

d�
�p�

�
m=1

�

cos
m��x − x��

L
��·��

�p� �x��dx�

=�
c�

�p�

d�
�p�

L · ��x − x����·��
�p� �x��dx�

Appendix D: Constants for Singular Integral Equations

The diagonal and modal matrices �� and R�
* appearing in Eq.

�68� have the following form

�� = �0 0 0

0 − �� 0

0 0 + ��

�, R�
* = � 0 1 1

− R21 − iR22 iR22

1 − iR33 iR33
�

where

�� =��B13
*��2B22

*� − �B12
*��2B33

*�

B11
*���B23

*��2 − B22
*�B33

*��

and

R21 =
B13

*�

B12
*� , R22 =

1

��

B13
*�B23

*� − B12
*�B33

*�

B22
*�B33

*� − �B23
*��2 ,

R33 =
1

��

B12
*�B23

*� − B13
*�B22

*�

B22
*�B33

*� − �B23
*��2
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Plane Analysis of Finite
Multilayered Media With Multiple
Aligned Cracks—Part II:
Numerical Results
In Part I of this paper, elasticity solutions were developed for finite multilayered domains,
weakened by aligned cracks, that are in a state of generalized plane deformation under
two types of end constraints. In Part II we address computational aspects of the devel-
oped solution methodology that must be implemented numerically, and present new fun-
damental results that are relevant to modern technologically important applications in-
volving defect criticality of multilayers. The computational aspects include discussion of
the various parameters that influence the accuracy with which numerical results are
generated and subsequent verification by a comparison with previously reported results
in the limit, as the in-plane dimensions become very large and layer anisotropy vanishes.
The present solution quantifies the thus far undocumented effects of finite dimensions,
crack location, and material anisotropy due to a unidirectional fiber-reinforced layer’s
orientation on Mode I, II, and III stress intensity factors in composite multilayers with
single and multiple interacting cracks under different loading and boundary conditions.
These effects may have significant impact on defect criticality of advanced multilayered
structures when cracks are in close proximity to vertical and horizontal boundaries.
�DOI: 10.1115/1.2201889�

1 Synopsis

In Part I of this paper, an exact solution was presented to the
plane elasticity problem of a multilayer containing horizontal
cracks under two types of end-face boundary constraints. The
multilayer has finite dimensions in the analysis plane and is infi-
nitely long in the out-of-plane direction. The end constraints
mimic horizontal and vertical pins at the multilayer’s left and right
faces. The number of layers is arbitrary as is the number of hori-
zontal cracks on any interface separating two adjacent layers. The
individual layers can be �transversely� isotropic, orthotropic, or
monoclinic, as is typical of advanced composite laminated plates.
Monoclinic layers are obtained by rotating a transversely isotropic
or orthotropic ply by an angle about the axis perpendicular to the
layered configuration.

Following the local/global stiffness matrix formulation and so-
lution methodology for composite structures; cf. Pindera �1�, and
specifying the traction vector T�

+�x� on the bottom face of the pth
crack on the cracked �th interface �Fig. 2 in Part I�, the problem
was reduced to the determination of the unknown crack-opening

displacement functions ��
�p� for each crack governed by the fol-

lowing singular integral equations valid in the interval c�
�p�

�x

�d�
�p� �Eq. �1� of Part I�,

T�
+�x� = Ā�

*��
�p��x� +

1

�
�

c�
�p�

d�
�p�

B̄�
* ��

�p��x��
x� − x

dx�

+
1

��
�=2

n

�
q=1

Q���

�
c�

�q�

d�
�q�

K̄���x,x����
�q��x��dx� + F��x� �1�

In the above, n in the summation limit is the total number of
layers �assuming that in the most general case all interfaces are
cracked�, Q��� is the number of cracks on the �th interface,

K̄���x ,x�� are regular Fredholm kernels, F��x� is the specified

external load vector, and Ā�
* , B̄�

* are constant square matrices
whose elements depend only on the material properties of adja-
cent layers. Specifically, from Eq. �59� of Part I repeated here for
convenience, these matrices are

Ā�
* = �0 − B12

*� − B13
*�

B12
*� 0 0

B13
*� 0 0

�, B̄�
* = �B11

*� 0 0

0 B22
*� B23

*�

0 B23
*� B33

*� � �2�

where Bij
*�’s are given in terms of the asymptotic values of the

elements of the local stiffness matrices of adjacent layers, namely
B�

* =K11
*,��K*,��−1K22

*,�−1 with �K*,��−1= �K22
*,�−1+K11

*,��−1. Here,
we consider horizontal cracks situated between adjacent layers

with the same elastic moduli so that Ā�
* =0, thereby avoiding un-

necessary complications associated with the physically inadmis-
sible, crack-tip oscillatory stress behavior that occurs when the
adjacent plies have different elastic moduli, cf. Ting �2� for an
excellent survey of the various approaches to overcome this dif-
ficulty.

The unknown crack-opening density functions for the normal-
ized pth crack in the interval 	t�

�p� 	 �1 along the �th interface are
approximated by a series of Chebyshev polynomials Tj�t�

�p�� of the
first kind, with the associated influence coefficients C j���

�p� multi-

plied by the weight function ���t�
�p��= �1− t�

�p��− 1
2 �1+ t�

�p��−1/2
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��
�p��t�

�p�� =
�d�

�p� − c�
�p��

2
�1 − t�

�p��−1/2�1

+ t�
�p��−1/2�

j=0

Nj �2j�!
22j�j ! �2C j���

�p� Tj�t�
�p�� �3�

Using a collocation technique developed by Erdogan et al. �3�
based on a Chebyshev polynomial orthogonality identity, the so-
lution of the above singular integral equations is reduced to a
system of algebraic equations in the unknown influence coeffi-
cients �see Eq. �76� of Part I�,

�

2
� j

�−1/2,−1/2�C�j+1����
�p� + �

�=2

n

�
q=1

Q���

�
k=0

Nj �d�
�q� − c�

�q��
2

D jk����
�pq� Ck���

�q�

= G j���
I�p� + G j���

II�p� �4�

for each j=0,1 ,2 , . . . ,Nj. The constant matrices and vectors
D jk����

�pq� , G j���
I�p� , G j���

II�p� are given below

D jk����
�pq� =

�2j�!
22j�j ! �2 ·

�2k�!
22k�k ! �2

��
−1

+1 
�
−1

+1

h���t�
�p�,��

�q��Tj�t�
�p���̂��t�

�p��dt�
�p��

�Tk���
�q�������

�q��d��
�q�

G j���
I�p� = −

�2j�!
22j�j ! �2�

−1

+1

B̄�
*−1F��t�

�p��Tj�t�
�p���̂��t�

�p��dt�
�p�

G j���
II�p� =

�2j�!
22j�j ! �2�

−1

+1

B̄�
*−1T�

+�t�
�p��Tj�t�

�p���̂��t�
�p��dt�

�p� �5�

where �̂��t�
�p��= �1− t�

�p��1/2�1+ t�
�p��1/2 and h���x ,x��

= B̄�
*−1K̄���x ,x��.

Part II of the paper is focused on the verification of this solution
and a presentation of new fundamental results involving crack
interactions in finite multilayer geometries with different crack
arrays and material anisotropies. These results have been gener-
ated for multilayers with end-face boundary conditions that mimic
horizontal pins. In light of the numerical implementation of the
developed solution, the computational approach is first discussed
viś-a-viś solution’s convergence in the following section. The
third section is devoted to the investigation of previously undocu-
mented effects of laminate dimensions, crack location, and layer
anisotropy on the stress intensity factors of single and multiple
horizontal cracks situated at different elevations under internal
and external loading, including cracks vertically stacked in a
single column as well as cracks diagonally arranged in an echelon
array. The solution’s verification is carried out by comparison with
known results in the limit as the in-plane dimensions become very
large for anisotropic layers oriented in a manner that produces
isotropic behavior in the analysis plane. Finally, limitations of this
solution and future prospects are discussed in the last section be-
fore a summary and conclusions.

2 Computational Approach and Convergence
An accurate solution of the algebraic system of equations for

the unknown coefficients C j���
�p� of the crack-opening displacement

representation, Eq. �3�, requires accurate evaluation of the coeffi-
cients D jk����

�pq� , G j���
I�p� , and G j���

II�p� that must be done numerically. The

accuracy with which G j���
I�p� and G j���

II�p� are calculated depends on

the convergence behavior of the elements in the Fourier series
domain that form the external loading vector F��x� and the inter-

nal traction T�
+�x� applied to the crack faces, the latter being typi-

cally constant. The convergence behavior of the F��x� elements
depends on the smoothness of the applied loading. Single integrals
are employed to determine G j���

I�p� and G j���
II�p� for the specified T�

+�x�
and F��x�, which require much less computational effort than in
the calculation of D jk����

�pq� discussed below.

The accuracy with which the coefficients D jk����
�pq� are determined

depends on the following three items: evaluation of the kernel

functions K̄���x ,x�� appearing in the associated integrals; repre-
sentation of the crack-opening displacements; and integration of
double integrals. The first two items involve the use of a sufficient
number of terms in the Fourier series representation of the dis-
placement fields in the individual layers, and two additional sum-
mations involving the function 	�x ,x�� �or 	�x� ,x�� and the
crack-opening displacement approximations based on the Cheby-

shev polynomials. Specifically, the Fredholm kernels K̄���x ,x��
that are directly related to the functions h���x ,x�� in the kernels
associated with D jk����

�pq� involve the first two summations, as seen

by listing typical elements of these Fredholm kernels below for
horizontally pinned ends,

K̄11
���x,x�� =

2�

L


11

�� + �	�x,x�� +
L

2�

1 − �pq

x� − x

���B11

*��
K̄12

���x,x�� =
2�

L

12

��

where


11
���x,x�� = �

m=1

�

A11
m���� cos�m�x

L

sin�m�x�

L




12
���x,x�� = �

m=1

�

�− A12
m�����cos�m�x

L

cos�m�x�

L



The elements Aij
m���� given by

A��
m = K11

m,�G��
m + K12

m,�G��+1��
m + K̄11

m,��K*,��−1K22
*,�−1���

− K12
m,��K*,�+1�−1K11

*,�+1���+1�� �6�

where G��
m are the appropriate ���� elements of the inverse of the

global stiffness matrix Km multiplied by the matrix Lm that de-
fines the locations of cracked interfaces, i.e., Gm= �Km�−1Lm, see
Eq. �38� of Part I, are obtained by inverting the global stiffness
matrix for each harmonic m as many times as is necessary to
obtain convergence. The function 	�x ,x�� defined on the square
0�x /L ,x� /L�1, which is reproduced below for convenience

	�x,x�� =
1

4
cot

��x + x��
2L

−
x − x�

4�L �
n=1

N	 1

� x − x�

2L

2

− n2

�7�

also contains a summation that must be carried out in a convergent
fashion. These two summations are discussed below in more de-
tail.

The convergence behavior of Aij
m���� that contribute to the ker-

nels K̄���x ,x�� is established by determining the value of m
=Nm at which these elements become negligibly small, which in
turn produces integrable kernels. For a single row of collinear
cracks �=� so that the elements Aij

m���� reduce to Aij
m����, while

for vertically offset cracks both �=� and ��� are present so that
all combinations Aij

m���� must be investigated. Under special load-
ing conditions, the form of Aij

m���� is known in advance. For in-
stance, A31

m����=A32
m����=A13

m����=A23
m����=0 if in-plane and out-of-
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plane tractions are decoupled at the cracked interface. Similarly,
Aii

m����

 
Aij

m���� �i , j=1,2 ,3� if normal traction is much more
dominant than shear tractions at the cracked interface.

The rates of convergence of the elements Aij
m���� depend on the

ratio of the layer thickness to laminate length and the material
anisotropy of the layers adjacent to cracks, as suggested by Eq.
�6�. Obviously, crack size and collinear crack location along a
given interface have no effect on Nm. This is demonstrated in Fig.
1 for a square plate divided into two layers with decreasing ratios
of the top layer to plate thickness, namely h1 /H=0.5, 0.01. The
material used to demonstrate the effect of anisotropy in this case
was unidirectional graphite/epoxy. This material was used
throughout the entire paper as discussed in the following section.
The effect of anisotropy was demonstrated for the following fiber
rotations about the z axis: �=0 deg, 45 deg, 90 deg �see Fig. 1 of

Part I�. As explained in Sec. 3, these orientations produce ortho-
tropic, monoclinic, and isotropic elastic properties in the analysis
plane x−z.

The effects of layer thickness and material anisotropy on the
convergence of the elements A11

m���� and A12
m���� with increasing

harmonic number m are demonstrated in Fig. 1, where increas-
ingly larger values of Nm are required for convergence as the top
layer thickness becomes increasingly small. As observed, material
anisotropy becomes increasingly less important in the conver-
gence behavior as m increases. Further, coupling between the
opening and in-plane sliding crack opening modes represented by
A12

m���� vanishes when the crack interface is in the middle of the
plate �h1 /H=0.5�, and increases with decreasing distance from the
top surface. Coupling between the opening and out-of-plane slid-

Fig. 1 Convergence of the A11
m„��… and A12

m„��… elements with the harmonic number m for a two-layer unidirectional graphite/epoxy
laminate with three fiber rotations about the z axis and increasingly thinner top layers characterized by �=h1 /H=0.5, 0.01 „top and
bottom…
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ing crack opening modes represented by A13
m���� �not shown� van-

ishes for the orthotropic and isotropic configurations. For the
monoclinic configuration, it exhibits the same trend as A12

m���� with
decreasing top layer thickness but is much weaker. The corre-
sponding effects on the convergence of the elements A22

m���� and
A33

m���� exhibit similar trends and therefore are not shown.

The second summation that contributes to K̄���x ,x�� involves
the calculation of 	�x ,x��, which can be graphically represented
by a surface. The surface of 	�x ,x�� is plotted in Fig. 2�a� over
the domain 0�x /L ,x� /L�1 for N	=400, which peaks when
�x /L ,x� /L�→ �0,0� or �1,1�. Since the elements of the kernel

K̄�� in Eq. �1� are defined in the interval c�
�p�

�x�d�
�p�, the func-

tion 	�x ,x�� controls the extent of crack-tip interaction with the
vertical boundaries. In particular, this interaction is strong when
the crack is situated close to the left or right boundary such that
the crack-tip and 	�x ,x�� domains are characterized by
x /L ,x� /L→0 or x /L ,x� /L→1. The crack-vertical boundary in-
teraction controlled by 	�x ,x�� for horizontally pinned end con-
straints is the same as collinear crack-crack interaction if one
imagines another fictitious crack symmetrically located on the
other side of the same vertical boundary due to the problem’s
symmetry and intrinsic periodicity of the half-range Fourier ex-
pansion. The presence of symmetry reduces a two-crack interac-
tion problem to a single crack-vertical boundary interaction prob-
lem with less than half the required computational effort if both

material and loading symmetry are preserved. The same reasoning
can be applied in the reduction of any finite-length layered com-
ponent possessing plane�s� of symmetry along its length in the x
direction to the analysis of the smallest periodic unsymmetric
length segment. Figure 2�b� illustrates that the maximum relative
difference between the values of 	�x ,x�� as the summation limit
N	 increases from 400 to 800 is only 0.076%, which demonstrates
that 	�x ,x�� converges at N	=400, regardless of the type of in-
teraction.

The third summation that affects the solution’s accuracy in-
volves Chebyshev polynomials, multiplied by unknown coeffi-
cients, which represent the actual crack shape upon superposition.
The number of these polynomials necessary to accurately capture
the crack-opening displacement is determined by studying the
rates of decay of the influence coefficients C j���

�p� for each crack

and application, and then truncating the number of Chebyshev
polynomials accordingly. A small Nj is enough when the crack
shape is regular while more terms are needed in the case of a
crack distorted, for instance, by an extremely strong collinear
crack interaction, by the presence of vertically offset cracks
nearby, or by the proximity to vertical or horizontal boundaries.
When the shape of the crack opening displacement is not too
distorted, numerical results indicate that Nj =10 is sufficient for
most applications. In the case of a strong collinear crack interac-
tion, however �which is an example considered in Sec. 3�, sub-
stantially more terms are required. This is illustrated in Fig. 3,
which demonstrates the rate of convergence of the influence co-
efficients C j���

�p� for different numbers of Chebyshev polynomials

used to approximate the crack opening displacements of two col-
linear cracks in an infinite isotropic plate as a function of the
normalized separation distance rd /2a. As observed, the number of
Chebyshev polynomials required to accurately approximate the
crack opening displacement rapidly increases with decreasing
crack separation distance. At large rd /2a values, the Chebyshev
polynomial coefficients quickly die out, requiring only a few
Chebyshev polynomials to yield a good crack opening displace-
ment approximation �as rd /2a→�, the number of terms goes to 1
and we recover the single noninteracting crack solution�. At small
rd /2a values, a large number is required. The results for rd /2a

Fig. 2 Surface plot of �„x ,x�… in the nondimensionalized
space

Fig. 3 Convergence of Chebyshev polynomial coefficients
used in approximating the crack opening displacements of two
collinear cracks with different separation distances in an infi-
nite isotropic plate under pure Mode I loading
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=0.001 were generated using 50 Chebyshev polynomials. As ob-
served, a substantially greater number is required to obtain an
accurate solution when rd /2a=0.0001.

The most time consuming aspect of setting up Eq. �4� is the
calculation of the double integrals in D jk����

�pq� . This calculation

must be carried out carefully in the presence of strong crack in-
teraction, especially interaction involving adjacent collinear
cracks situated very close to each other. For instance, the inte-
grand h���t�

�p� ,��
�q�� increases dramatically in the vicinity of two

collinear inner crack tips, where strong crack interaction occurs.

Such behavior is observed in Fig. 4�a�–4�c� in the case of two
collinear cracks centrally positioned in a large unidirectional
graphite/epoxy plate subjected to normal loading with the fiber
rotation of 90 deg about the z axis, which produces isotropic elas-
tic material parameters in the x−z plane. In this figure, surface
plots of the element h11

���� for �p ,q�= �2,1� are given for the nor-
malized separation distances rd /2a=0.1, 0.01, 0.001, showing a
rapid increase in the magnitude of this element in the vicinity of
the normalized coordinates �−1, +1�. These coordinates represent
interaction of the left corner of the right crack with the right

Fig. 4 Surface plots of the h11
„pq…

„x ,x�… elements for the three normalized separation distances rd /2a=0.1, 0.01, 0.001 „top, middle
and bottom…: „a…-„c… two collinear crack interaction; „d…-„f… single crack interaction with vertical boundary
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corner of the left crack. Similar behavior is observed for the re-
maining diagonal elements h22

����, h33
����, except for the sign rever-

sal. In the extreme situation when two collinear cracks almost
coalesce, h���t�

�p� ,��
�q�� becomes nearly singular and direct evalu-

ation of D jk����
�pq� cannot be performed accurately. Similar distribu-

tions are observed in the presence of a vertical boundary halfway
between the two cracks, as observed in Fig. 4�d�–4�f�. In this case,
�p ,q�= �1,1� and the rapid increase of h11

���� with decreasing dis-
tance from the vertical boundary left of the crack occurs in the
vicinity of the coordinates �−1,−1�. This crack-vertical boundary
interaction is due to the contribution from 	�x ,x�� in the expres-
sions for the Fredholm kernels, in contrast with the crack-crack
interaction due to the term �L /2���1−�pq� / �x�−x�.

We mention that some special properties of h���t�
�p� ,��

�q�� can be
deduced in advance of performing the actual numerical integration
in order to increase the computational algorithm’s efficiency. For
instance, in the case of isotropic and orthotropic materials, decou-
pling of the in-plane and out-of-plane crack opening displacement
modes under single mode loading leads to h13

����=h23
����=h31

����

=h32
����=0. Also, in those situations when the normal tractions are

dominant, h12
�����0 and h21

�����0. In the results shown in Fig. 4,
all these conditions are satisfied due to the layer’s isotropy, crack’s
symmetric location, and applied normal loading that eliminates
the presence of shear modes along the crack plane.

3 Numerical Results
Numerical results for a single crack, two interacting cracks and

multiple cracks in homogeneous and layered configurations are
presented to demonstrate the effect of finite dimensions and layer
anisotropy on the stress intensity factors. The effect of material
anisotropy is demonstrated by rotating a unidirectional graphite/
epoxy composite layer, with the fiber direction initially coincident
with the x axis, by the angle � about the z axis. Figure 5 illustrates

the variation of the elastic stiffness matrix coefficients C̄ij���, with
the rotation angle calculated using the transformation equations
given by Eq. �4� in Part I of this paper. The homogenized or
macroscopic engineering moduli of this composite used to calcu-
late the elastic stiffness matrix elements Cij in the transformation
equations were generated using the micromechanics model called
FVDAM �formerly HFGMC�, Bansal and Pindera �4,5�. Table 1
lists the elastic moduli of graphite fibers and epoxy matrix used in
the calculations, which were performed based on the unit cell
containing 65% fibers by volume arranged in a hexagonal array
shown in Fig. 6. As discussed by Nye �6�, such a unit cell pro-
duces homogenized transversely isotropic properties for a unidi-
rectional composite, which indeed are correctly predicted by the
employed micromechanics model, Table 2. The plane of isotropy
is the x2−x3 plane which is orthogonal to the fiber axis denoted by
x1 in Fig. 6. Therefore, the initial fiber orientation of �=0#x; with
the fiber axis coincident with the global x axis produces an appar-
ently orthotropic material in the analysis plane x−z, with distinct
Young’s moduli Exx, Ezz, distinct Poisson’s ratios �xz, �zx, and
shear modulus Gxz, which is not related to Ezz and �xz through the
transverse isotropy relations. At �=90 deg, the homogenized
moduli of the unidirectional composite become isotropic in the
analysis plane, with the isotropic relations Exx=Ezz, �xz=�zx, and
Gxz=Exx /2�1+�xz�. At both limits of the fiber rotation angle �
=0 deg and 90 deg about the z axis, the in-plane and out-of-plane
responses are uncoupled, i.e., B23

* =0, as seen in Fig. 7, which

illustrates the variation of the B̄�
* elements with �. Therefore, in

the limit as the layers’ dimensions become very large with respect
to the crack length, the present solution for �=90 deg is compared
with solutions available in the literature for single and multiple
crack problems on infinite isotropic domains for verification pur-
poses, noting that B11

* =B22
* at this rotation angle; Fig. 7.

We start with a single crack problem, progress to two interact-
ing cracks that are either collinear or vertically offset, and then
consider multiple horizontal cracks that are either vertically
stacked in a single column or diagonally stacked in an echelon
array in spatially homogeneous and layered graphite/epoxy lami-
nates. In all examples, the overall length of a layer or a layered
laminate is L and its height is H. The layer �or laminate� height to
length ratio is denoted by �=H /L and the layer �or laminate� to
crack length ratio is denoted by �=L /2a. Another geometric pa-
rameter that represents the top layer to laminate thickness ratio is
denoted by �=h1 /H. The effect of these parameters as well as

Fig. 5 Effective moduli of the graphite/epoxy unidirectional
composite as a function of the fiber rotation angle � about the
z axis

Table 1 Elastic properties of the constituent phases „graphite
fibers and epoxy matrix… used in the FVDAM calculations. The
graphite fiber is transversely isotropic in the x2−x3 plane or-
thogonal to the fiber axis denoted by x1, while the epoxy matrix
is fully isotropic.

Material E11 �Msi� E22 �Msi� G12 �Msi� �12 �23

Graphite fiber 33.800 3.350 1.300 0.200 0.400
Epoxy matrix 0.776 0.776 0.287 0.350 0.350
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layer anisotropy due to the layer’s rotation about the z axis is
investigated for the considered single and double crack problems
involving spatially homogeneous configurations in the first two
subsections. In the third subsection involving vertically stacked
cracks, the effects of rotation angle and manner of external bound-
ary condition application are first examined for spatially uniform
laminates. The second part of the third subsection demonstrates
the effect of orientational grading on stress intensity factors of
diagonally stacked cracks embedded in layers with different elas-
tic parameters due to gradual layer rotation.

3.1 Finite Layer With a Single Crack. We first consider a
single crack of length 2a centrally positioned in a square layer in
the analysis plane, �=1, �=0.5, Fig. 8, and investigate the effect
of material anisotropy due to the layer rotation by the angle �
about the z axis on Mode I stress intensity factor for three layer-
to-crack length ratios �=1.2, 5, 100. These ratios control the ex-
tent of crack interaction with the layer’s boundaries, with �→�
representing a single crack embedded in an infinite medium.

Figure 9 presents the normalized Mode I stress intensity factor
KI /KI

� due to loading by internal pressure of magnitude p
=100 MPa applied to the crack faces as a function of the rotation
angle � for the three ratios �. The normalizing stress intensity
factor KI

�=�p /�2 represents the value obtained from the infinite
plate problem for an isotropic medium. As observed, the layer’s
anisotropy has virtually no effect on the Mode I stress intensity
factor, even for very low � ratios that result in a substantial inter-
action of the crack tip with the layer’s vertical boundaries, pro-
ducing KI /KI

��1.7 when �=1.2. As �→�, the regular kernel
contributions vanish, and the solution for the crack opening dis-
placement reduces to that for a crack embedded in an infinite

homogeneous anisotropic plane. Since the considered problem is
symmetric with respect to the geometry and loading, Mode II and
III stress intensity factors are zero. The absence of these crack-
opening displacement modes, together with little variation in the
coefficient B11

* with � seen in Fig. 7, produces virtually no varia-
tion in KI with the rotation angle. This will not be the case in the
presence of all three crack-opening displacement modes, as will
be seen in the sequel.

Next, we demonstrate the effects of the two geometric ratios �
and � on the Mode I stress intensity factor for the �=90 deg layer
orientation when the crack is centrally positioned. At this orienta-
tion, the layer’s in-plane response is isotropic, and thus our results
can be directly compared to available solutions. Figure 10 pre-
sents the normalized stress intensity factor KI /KI

� as a function of
the ratio � for the ratios �=0.1, 0.2, 0.5, 1.0 that represent rect-
angular layers elongated along the horizontal direction that be-
come increasingly more square. Results for �
1.0 produce re-
sults comparable to the square plate results, and thus are not
included here. As expected, the normalized stress intensity factor
KI /KI

� decreases with increasing � at different rates that depend
on the layer’s aspect ratio �, approaching 1.0 as �→�. As �
→1.0, the normalized stress intensity factor KI /KI

� increases rap-
idly as the layer becomes progressively thinner, demonstrating the
combined influence of the horizontal and vertical boundaries on
crack tip interaction.

The last example demonstrates the effect of layer anisotropy
and crack’s proximity to the layer’s upper surface of a square plate
for two � ratios chosen to quantify the degree of crack tip inter-
action with vertical and horizontal boundaries. The crack proxim-
ity to the horizontal boundary is controlled by the ratios �=0.5,

Table 2 Elastic properties of the unidirectional graphite/epoxy
composite with the fiber volume fraction 0.65 predicted by the
FVDAM model. Note that the model correctly predicts that the
hexagonal fiber array produces homogenized elastic moduli
characteristic of a transversely isotropic composite with E22
=E33, G12=G13, �12=�13 and G23=E22/2„1+�23….

Material
E11

�Msi�
E22

�Msi�
G12

�Msi�
G23

�Msi� �12 �23

Graphite/epoxy 22.244 1.906 0.696 0.659 0.247 0.446

Fig. 6 Repeating unit cell of a transversely isotropic graphite/
epoxy unidirectional composite with 65% fiber content used in
the FVDAM calculation of the homogenized elastic properties.
The hexagonal fiber arrangement in the 2−3 plane ensures
transverse isotropy in this plane. Fig. 7 Elements of the matrix B̄�

* of the graphite/epoxy unidi-
rectional composite as a function of the fiber rotation angle �
about the z axis

Fig. 8 Geometry of the single-crack problem, showing the
geometric parameters used in the numerical study
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0.1, 0.01, whose decreasing magnitudes denote decreasing dis-
tances to the layer’s top surface. The first ratio is included for
reference and represents a centrally positioned crack considered in
the first example. It is only for this ratio that Mode II and III stress
intensity factors vanish for the applied internal pressure loading.
The stress intensity factors have been generated as a function of �
for the above � ratios and the two ratios �=100, 1.2, which pro-
duce minimal and substantial crack tip interaction with the verti-
cal boundaries, respectively.

The results for the three sets of stress intensity factors, normal-
ized by the Mode I stress intensity factor KI

� for the infinite iso-
tropic plate problem, are shown in Fig. 11. Examining the results
for the �=100 case, we conclude that layer anisotropy has only a
noticeable influence when the crack is very close to the top sur-
face. Even in this case, the increase in the Mode I stress intensity

factor is just on the order of 5%, as the fiber orientation increases
from �=0 deg to 90 deg. The influence of the layer anisotropy on
the Mode II and III stress intensity factors for cracks situated very
close to the top surface is more substantial, however these stress
intensity factors are a small fraction of the Mode I factor. In
particular, the Mode II stress intensity factor is on the order of
2.3%–3.6% of Mode I, depending on the rotation angle �. The
Mode III factor is an order of magnitude lower. The influence of
layer anisotropy increases dramatically when the crack length in-
creases relative to the layer length, producing substantial crack tip
interaction with vertical boundaries. The results for the �=1.2
case are included in Fig. 11 and demonstrate not only the substan-
tial influence of layer anisotropy on the three stress intensity fac-
tors, but also the possibility that maximum values of these factors
can occur at rotation angles other than �=0 deg or 90 deg, de-
pending on the crack’s proximity to the layer’s top surface. Fur-
ther, it is observed that for cracks very close to the layer’s top
surface, Mode II stress intensity factor dominates while Mode III
stress intensity factor is a significant percentage of the Mode I
value. These values are substantially greater relative to the corre-
sponding Mode I result for the isotropic infinite plate problem.

3.2 Finite Layer With Two Interacting Cracks. In this sub-
section, we consider a layer with two parallel cracks of equal
length 2a, the offset angle �, and the distance of rd between the
inner crack tips, Fig. 12. The applied loading is uniform internal
pressure p applied to the crack faces.

3.2.1 Collinear Cracks: �=0 deg. We first examine the col-
linear crack case by setting the offset angle �=0 deg, and inves-
tigate the effect of rotation angle � on the stress intensity factors at
the inner and outer crack tips for different crack distances relative
to the top surface defined by the ratios �=0.5, 0.1, 0.01. Since the
layer dimensions L and H have a significant influence on the stress
intensity factors, they are set large enough to enable a comparison
with the infinite solution for an isotropic medium when �
=90 deg and �=0.5. In order to mimic the infinite medium, we
set �=1 and �=100.

Figure 13 illustrates the effect of rotation angle � on Mode I, II
and III stress intensity factors at the inner and outer crack tips of
the right crack for the three � ratios when the normalized hori-
zontal separation distance rd /2a=0.1 between the two cracks pro-
duces a moderate level of stress interaction. When the cracks are
far from the top surface, the crack interaction produces a 50%
increase at the inner crack tip in Mode I stress intensity factor at
�=0 deg relative to the single crack case, Fig. 11. This increase
becomes 60% for this orientation at the closest distance to the top
surface. As also observed in the single crack case, it is only very
close to the top surface when the rotation angle � has a noticeable
effect on Mode I, II, and III stress intensity factors at both crack
tips that increase in magnitude with the rotation angle, with Mode
II and III actually reversing sign. The crack interaction produces a
greater increase in the Mode I stress intensity factor with a rota-
tion angle relative to the single crack case. On the other hand, the
relative increase in Mode II stress intensity factor with rotation
angle does not change significantly relative to the single crack
case. The maximum value of Mode III stress intensity factor also
occurs in the same � range, but increases by 100% relative to the
single crack case. The stress intensity factors at the outer crack
tips are also magnified by the crack interaction relative to the
single crack case, and dependence on the rotation angle is also
observed very close to the top surface. Interestingly, the magni-
tudes of the Mode II and III stress intensity factors in this case are
further increased relative to the inner crack tip, in contrast with
the expected decrease in Mode I stress intensity factor, but the
sign remains the same.

Next, we compare the results of our solution when �=90 deg
with the results of an exact elasticity solution for an isotropic
infinite medium, Erdogan �7�, as a function of the rd /2a ratio that

Fig. 9 Normalized Mode I stress intensity factor KI /KI
	 as a

function of the fiber rotation angle � for a square plate with a
centrally positioned crack of increasingly larger crack lengths
characterized by the ratios 
=L /2a=100, 5, 1.2

Fig. 10 Normalized Mode I stress intensity factor KI /KI
	 as a

function of the ratio 
=L /2a for a rectangular plate with a cen-
trally positioned crack and the rotation angle �=90 deg charac-
terized by the ratios �=H /L=1.0, 0.5, 0.2, 0.1
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Fig. 11 Normalized Mode I, II and III stress intensity factors KI /KI
	, KII /KI

	, KIII /KI
	 as a function of the fiber rotation

angle � for a square plate with a centrally positioned crack increasingly closer to the upper surface, demonstrating
the effect of the crack tip interaction with vertical boundaries controlled by the 
 ratio for „a…-„c… 
=L /2a=100; „d…-„f…

=L /2a=1.2
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varies from 1.0 to 0.001, representing different magnitudes of
crack interactions. In this case, the crack is situated in the middle
of the plate, �=0.5, and since it is loaded by internal pressure the
only nonzero stress intensity factor is the Mode I factor. Figure 14
compares the variation of the Mode I stress intensity factor with
the rd /2a ratio at both the inner and outer crack tips obtained
using the two solutions. As observed, the differences cannot be
discerned at this graphical resolution. An examination of the ac-
tual numerical values, Table 3, reveals the greatest difference at
the smallest employed ratio rd /2a=0.001, which produces an al-
most seven-fold Mode I stress intensity factor magnification rela-
tive to a single crack in an infinite isotropic medium. This differ-
ence is approximately 3.8% at the inner crack tip and 0.54% at the
outer tip. Fifty-one Chebyshev polynomials were employed to ap-
proximate the crack-opening displacement field for this case, as
also illustrated in Fig. 3 and included in the table. At rd /2a
=0.01, the differences between the two solutions decrease to
0.45% and 0.0% at the inner and outer crack tips, respectively.
Also included in the table is the comparison for rd /2a=0.0001. At
such a small separation distance, Fig. 3 indicates that the number
of Chebyshev polynomials required for an accurate solution is
substantially greater, which explains the reported difference of
almost 15% at the inner crack tips between Erdogan’s exact and
present solutions. At the outer crack tip the difference reduces to
1.87%

3.2.2 Offset Cracks: �=45 deg. Next, we examine stress in-
tensity factors as a function of the rotation angle � for the two
horizontal cracks offset by the angle �=45 deg, with the inner
crack tips separated by the distance rd /2a=0.1, 0.2. The plate
aspect ratio is initially set at �=1, and the results are generated for
the relative crack length ratio �=100 to simulate an infinite me-
dium for a direct comparison with the collinear crack case. Figure
15�a�–15�c� illustrates the variation of stress intensity factors at
the inner crack tips with � for the two normalized separation dis-
tances. In contrast with the two collinear cracks situated in the
middle of a large plate, the offset angle � also produces Mode II
and III stress fields at the inner crack tips absent in the collinear
case due to symmetry. Both Mode I and II stress intensity factors
increase monotonically with the rotation angle while Mode III
factor attains a maximum magnitude between �=30 deg and
45 deg. Unlike the former case, the relative variation of Mode I
stress intensity factor with � is not insignificant, while the relative
variations in Mode II and III stress intensity factors with � are
substantially greater. The offset angle also produces an increase in
the Mode I stress intensity factor at �=0 deg relative to that for
the collinear cracks at the same normalized separation distance. In
the case of Mode I and II stress intensity factors, decreasing the
normalized separation distance increases the magnitude of these
factors without a substantial change in the manner in which they
vary with the rotation angle. At the separation distance rd /2a
=0.2, the Mode II stress intensity factor is initially negative and
then becomes positive beyond �=20 deg, indicating a change in

the relative shearing of the crack faces with increasing �.
The effect of the layer aspect ratio for the normalized separa-

tion distance rd /2a=0.1 and the layer-to-crack length ratio �=5
when the crack-boundary interaction becomes important is illus-
trated in Fig. 15�d�–15�f� for decreasing relative layer thicknesses
characterized by �=1, 0.5, 0.2. In this case, decreasing the ratio �
produces an increase in the stress intensity factors accompanied
by a substantial change in the manner of variation with the rota-
tion angle �. In particular, decreasing the relative layer thickness
increases the difference between the stress intensity factors of the
�=0 deg and 90 deg configurations for the Mode I and II crack
opening displacements, with the concomitant increase in the
Mode III stress intensity factor between �=30 deg and 45 deg.

Finally, the present solution for �=90 deg and �=100 is com-
pared with the results reported by Isida �8� and Binienda �9� for
the offset angles of �=45 deg, 38.7 deg and the relative inner
crack tip separation distances of rd /2a=0.707 and 2.121 based on
these authors’ solutions of multiple interacting cracks in an infinite
isotropic plate. This comparison shown in Table 4 illustrates very
good agreement.

3.3 Multilayer With Cracks at Different Elevations. In this
subsection, we consider two multilayered configurations with
horizontal cracks at equally spaced elevations; Fig. 16. In the first
configuration shown in Fig. 16�a�, the equally spaced cracks are
stacked in a single vertical column, whereas in the second con-
figuration shown in Fig. 16�b� the cracks are vertically offset in a
diagonal or echelon array. In both cases, we calculate Mode I, II,
and III stress intensity factors at the tips of cracks positioned at
different distances from the top and bottom surfaces.

When the applied loading on the top and bottom surfaces of the
configuration with vertically stacked cracks takes the form of uni-
form vertical displacements, this problem reduces to a single
crack in a repeating unit cell subjected to periodic boundary con-
ditions when the configuration is homogeneous. Equally spaced
cracks in a single vertical column in an infinite isotropic plate
have been investigated by Isida �10� and Horii and Nemat-Nasser
�11�, thereby providing a means of testing the predictive capabil-
ity of our model for the fiber rotation angle �=90 deg. The results
generated for a layer with �=90 deg rotation angle as a function
of the ratio � under periodic boundary conditions for the normal-
ized vertical crack separation distance d /2a=2 are shown in Table
5 to demonstrate that in the limit as �→� our results converge to
those of Isida �10� and Horii and Nemat-Nasser �11�. When load-
ing takes the form of uniform normal pressure applied on the top
and bottom surfaces, the stress intensity factors will vary with the
distance from both surfaces, approaching the value generated un-
der periodic boundary conditions for a configuration containing a
sufficiently large number of cracks. This type of problem is of
interest in the micromechanics of heterogeneous materials, where
the calculation of homogenized properties due to material hetero-
geneity, including cracks and porosities, must be performed on

Fig. 12 Geometry of the interacting two-crack problem
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material subvolumes containing sufficient microstructural details,
to make the result independent of the applied boundary condi-
tions. This is the first problem considered in this subsection.

The echelon crack problem has been investigated by Du and

Aydin �12� in the context of an infinite isotropic plate subjected to
farfield uniform normal traction. Herein, we investigate this prob-
lem under uniform vertical displacement boundary conditions in
order to determine the influence of the rotation angle � on the

Fig. 13 Normalized Mode I, II and III stress intensity factors KI /KI
	, KII /KI

	, KIII /KI
	 at the inner and outer tips of two

collinear cracks separated by the normalized distance rd /2a=0.1 at increasingly closer normalized distances �
=h1 /H to the upper surface of a large square plate „
=L /2a=100… as a function of the fiber rotation angle �
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local crack-tip stress intensity factors at different crack elevations.
Under this type of boundary condition, the finite multilayered con-
figuration responds like a unit cell in a periodic array containing
an infinite number of repeating rows of diagonally positioned
horizontal cracks. Therefore, any variation in the local stress in-
tensity factors with vertical elevation can be attributed to the ac-
tual crack distribution and the resulting local crack-crack and
crack-horizontal boundary interaction caused by periodicity rather
than the manner of load application investigated in the first
problem.

In the above problems, each crack is embedded between adja-
cent layers of the same properties. Therefore, a plate with n ver-
tically stacked or offset horizontal cracks will consist of 2n layers.
In the first case, all unidirectional graphite/epoxy layers have the
same orientation that produce either orthotropic ��=0 deg� or iso-
tropic ��=90 deg� elastic properties in the analysis plane. We note
that only the surface layers produce a strong dependence of the
stress intensity factors on � under traction loading, with the inte-
rior dependence vanishing for the considered loading and geom-
etry. In the second case, we also investigate the effect of gradually
changing the fiber rotation angle for each pair of adjacent layers
containing a single crack, effectively producing an orientationally
graded layered composite plate. In both cases, the normalized ver-

tical crack spacing is d /2a=0.5.

3.3.1 Vertically Stacked Cracks. We consider two multilayers
with the orientations �=0 deg, 90 deg containing vertical columns
of 19 cracks characterized by the layer-to-crack length ratio �
=10, and first generate baseline values for the stress intensity
factors by subjecting the two configurations to a uniform vertical
displacement on the top surface with the bottom surface con-
strained. As expected, the Mode I stress intensity factors for all
cracks are the same and equal to the normalized value of
KI /KI

per=1.0, with the Mode II and III factors identically zero.
Identical results are obtained for a single horizontal crack as was
verified.

Next, the loading on the top surface is changed to uniform
normal traction with the bottom surface constrained. In light of
symmetry, this is equivalent to a multilayer with 38 vertically
stacked cracks loaded by uniform normal tractions at both sur-
faces. Figure 17 presents a comparison of the normalized stress
intensity factors KI /KI

per and KII /KI
per at the tips of cracks at dif-

ferent distances from the top surface of the multilayers with �
=0 deg and 90 deg orientations under this loading. As observed,
under uniform traction loading Mode I stress intensity factors for
cracks in the immediate vicinity of the plate’s top surface are
substantially higher than the value obtained under uniform dis-
placement boundary conditions, and only approach this value for
cracks far removed from the top surface. It is only at the tenth
crack that the Mode I stress intensity factor becomes approxi-
mately the same as that under periodic boundary conditions. Mode
II stress intensity factors are also significant near the top surface,
but in contrast with the former case quickly decrease to zero with
increasing distance from the top surface. The Mode II stress in-
tensity factor for the third crack from the top surface is already
acceptably small. The rotation angle �=90 deg, which produces
isotropic elastic moduli in the x−z plane, results in the largest
stress intensity factors for each crack relative to other rotation
angles, including �=0 deg. The differences, however, are limited
to the first few top surface layers, with the differences vanishing
in the interior.

The above results can be used to generate the effective stiffness
elements C13, C23, C33 of materials weakened by horizontal cracks
under uniform loading by �33 when �11=�22=0 �as is the case in
this example�. For the considered example, the crack array pro-
duces reduced orthotropic elastic stiffness elements that can be
employed to calculate the corresponding Young’s moduli and
Poisson’s ratios. As the present solution is exact, such results can
be employed as baseline results for comparison with other meth-
ods for different arrays of horizontal cracks in periodic arrays.

3.3.2 Vertically Offset Cracks in an Echelon Array. Finally,
we determine the stress intensity factors for cracks in multilayers
with a diagonal array of horizontal cracks subjected to a uniform
vertical displacement on the top surface and constrained on the
bottom. The presence of vertically offset cracks gives rise to all
three crack opening displacement modes at each crack tip. The
presented results are normalized by Mode I stress intensity factor
at the left crack tip of the tenth or middle crack when this crack is
embedded in a layer with �=90 deg.

Figure 18�a�–18�c� presents normalized stress intensity factors
for each crack in the echelon array, starting with the first crack and
progressing downward, for the seven spatially uniform rotation
angles �=0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, 90 deg.
In contrast with the results for vertically stacked cracks under
uniform normal traction loading, Mode I, II, and III stress inten-
sity factors increase with increasing distance from the top surface,
with the maximum occurring at the tenth crack, and subsequently
decrease. The stress intensity variation with vertical distance is
substantial for all three modes. In the case of Mode I and II stress
intensity factors, the results are bounded by the stress intensity
factors for the 0 deg and 90 deg rotation angles, with the isotropic
layer orientation producing largest stress intensity factor at each

Fig. 14 Normalized Mode I stress intensity factor KI /KI
	 at the

inner and outer tips of two collinear cracks centrally positioned
„�=h1 /H=0.5… in a large square plate with the rotation angle �
=90 deg as a function of the normalized distance rd /2a

Table 3 A comparison of the Mode I stress intensity factors for
two collinear cracks in an infinite isotropic plate as a function
of the separation distance rd /2a generated by the present so-
lution with the results reported by Erdogan †7‡. Nj denotes the
highest order of Chebyshev polynomials used in approximat-
ing the crack opening displacement.

Erdogan �7� Present solution �%�

rd /2a Nj KI
inner KI

outer KI
inner KI

outer

0.0001 50 11.2457 1.3347 12.8750 �14.49� 1.3098 �−1.87�
0.0010 50 7.0224 1.2576 6.7582 �−3.76� 1.2508 �−0.54�
0.0050 44 3.8411 1.2242 3.8093 �−0.83� 1.2235 �−0.06�
0.0100 40 3.0048 1.2058 2.9907 �−0.45� 1.2057 �0.00�
0.0500 30 1.7950 1.1510 1.7898 �−0.29� 1.1508 �−0.02�
0.1000 20 1.4914 1.1220 1.4896 �−0.12� 1.1222 �0.02�
0.5000 10 1.1125 1.0517 1.1121 �−0.04� 1.0517 �0.00�
1.0000 10 1.0480 1.0280 1.0480 �0.00� 1.0281 �0.00�
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Fig. 15 Normalized stress intensity factors KI /KI
	, KII /KI

	 and KIII /KI
	 at the inner tips of two horizontal cracks that

are offset by �=45 deg in the middle of a plate as a function of the fiber rotation angle �, illustrating the effects of:
„a…-„c… normalized separation distance rd /2a=0.1,0.2 for a large square plate with 
=L /2a=100; „d…-„e… plate aspect
ratio �=H /L=0.2, 0.5, 1.0 for the separation distance rd /2a=0.1 and a smaller plate with „
=L /2a=5…

156 / Vol. 74, JANUARY 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



rotation angle for Mode I and the orthotropic layer orientation for
Mode II. The largest stress intensity factor for Mode III also oc-
curs at the tenth crack for the 45 deg rotation angle. The asym-
metry in the results, which is particularly evident in the case of
Mode II stress intensity factor, is due to the diagonal array archi-
tecture and the top and bottom surface crack interaction under the
applied boundary conditions, with reversed results at the right
crack tips with increasing distance from the top surface �not
shown�.

Figure 18�d�–18�f� presents the corresponding results when
each pair of layers containing a single crack is orientationally
graded from �=0 deg at the top surface to �=90 deg at the bot-

tom surface using 5 deg increments. Included in the figure are the
results for the 0 deg and 90 deg rotation angles. These rotation
angles provide upper and lower bounds between which the Mode
I and II stress intensity factors of the orientationally graded con-
figurations vary with increasing distance from the top surface. In
the case of Mode III, coupling between in-plane and out-of-plane
stress fields vanishes for orthotropic and isotropic configurations.
As suggested by the spatially uniform rotation angle cases pre-
sented in Fig. 18�a�–18�c�, the maximum value of Mode III stress
intensity factor occurs at the 10th crack for the �=45 deg rotation
angle.

Table 4 A comparison of the Mode I stress intensity factors at
the inner tips of two cracks offset by 45 deg and 38.7 deg in an
infinite isotropic plate as a function of the separation distance
rd /2a generated by the present solution with the results re-
ported by Isida †8‡ and Binienda †9‡.

Offset angle � rd /2a Isida �8� Binienda �9� Present solution

45 deg 0.707 1.12 1.1254 1.1239
45 deg 1.414 1.04 1.0489 1.0488
45 deg 2.121 1.02 1.0254 1.0256

38.7 deg 0.640 1.13 1.1317 1.1302
38.7 deg 1.281 1.05 1.0551 1.0547
38.7 deg 1.921 1.03 1.0302 1.0303

Fig. 16 Geometry of the layered configurations with vertically situated mul-
tiple cracks: „a… vertically stacked cracks in single column; „b… diagonally
stacked cracks in an echelon array

Table 5 Convergence of the Mode I stress intensity factors for
a single column of vertically stacked cracks in a finite-length
isotropic plate subjected to periodic boundary conditions to
the results of Isida †10‡ and Horii and Nemat-Nasser †11‡ with
an increasing layer to crack length ratio. The vertical separa-
tion distance normalized by the crack length is d /2a=2.

L /2a Isida �10� Horii & Nemat-Nasser �11� Present solution

10 – – 0.8430
100 – – 0.7979

1000 – – 0.7962
� 0.78 0.7896 –
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4 Limitations and Future Prospects
The local/global stiffness matrix approach provides a system-

atic framework for constructing the governing system of equations
for the crack opening displacement of arbitrarily situated horizon-
tal cracks in multilayers of finite dimensions in the analysis plane.
This facilitates the solution’s implementation and potentially im-
proves its efficiency due to reduction in the multilayer’s global
stiffness matrix that arises through efficient application of interfa-
cial continuity conditions. However, in the presence of cracks the
number of layers has little effect on the execution time. For in-
stance, the execution time for a single crack embedded in an ar-
tificially layered structure comprised of 100 layers differs little
from the execution time for the same crack embedded in a two-
layer configuration. The execution time increases substantially
with an increasing number of cracks. Multiple cracks with very
strong interactions require substantial computational effort. An 11-
fold loop is used to evaluate the D jk����

�pq� coefficients in the final

system of algebraic equations for the crack opening displacement
functions, which consumes most of the execution time. This cal-
culation is expensive, even for a row of weakly interacting collin-
ear cracks, which requires only a 7-fold loop with a smaller num-
ber of Chebyshev polynomials for each crack. Doubling the
number of cracked interfaces or cracks along the same interface
quadruples, at the minimum, the execution time. Current compu-
tational capabilities make it prohibitive and unrealistic to run a
case involving several hundred strongly interacting cracks, al-
though a problem involving 100 moderately interacting cracks is
practical.

There are several ways to improve the solution’s computational
efficiency. First, the double integrals associated with the kernels
h�� can be transformed into single integrals using hypergeometric
functions, as was done by Chatterjee et al. �13�. Second, the num-
ber of Chebyshev polynomials can be chosen selectively for each
crack according to the intensity of crack interaction, instead of the
same number used for all cracks, as was done in the present com-
putational approach. However, in extreme situations, where the
normalized separation distance between cracks is very small,
rd /2a�0.001, the bounded Fredholm kernels become very large
at the corners of the domain boundaries. This, in turn, makes an
accurate integration of the Fredholm kernels very difficult and
also requires a very large number of Chebyshev polynomials to
accurately approximate the crack opening displacement. In such
cases, an asymptotic approach is required. Another approach that
shows promise involves partial homogenization of the layered me-
dia outside the region of interest, where accurate estimates of
stress intensity factors are required, as described by Chen et al.
�14� in the context of a multilayer indented by a flat rigid punch.

5 Summary and Conclusions
The numerical results for the stress intensity factors in finite

anisotropic multilayers presented in Part II of this two-part paper
have demonstrated the developed solution’s accuracy upon a com-
parison with known results generated in the limit, as the multilay-
er’s dimensions approached infinity and as the anisotropy in the
analysis plane was reduced to isotropy through an appropriate
coordinate transformation. More importantly, new fundamental re-
sults have been generated that demonstrate the previously undocu-
mented combined effects of finite dimensions and material aniso-
tropy on Mode I, II, and III stress intensity factors in multilayers
composed of differently oriented, unidirectional composite plies
that produce monoclinic elastic properties in the analysis plane.
These results are technologically important in light of the renewed
interest in large-scale laminated composite structures for aircraft
applications, in particular, and the ongoing activities in the imple-
mentation of multilayer architectures into emerging technologies.
Defect criticality is an important consideration in such designs
that can now be more efficiently analyzed and designed using the
developed elasticity-based solution.

In particular, under Mode I loading of an homogeneous mono-
clinic layer with a centrally situated crack, only the corresponding
crack opening displacement is present and the rotation of the lay-
er’s principal material coordinate system does not affect the re-
sulting stress intensity factor. Decreasing the layer to crack length
ratio increases the Mode I stress intensity factor uniformly for all
rotation angles. All three crack opening displacement modes are
present when the crack is situated close to the horizontal bound-
aries and the dependence on the layer’s orientation increases sig-
nificantly with a decreasing layer to crack length ratio. In the close
proximity of the upper surface, Mode II crack opening displace-
ment dominates when strong interaction with vertical boundary
occurs, and substantial dependence on the ply orientation is ob-
served for all three modes. In such situations, Mode III is a sig-
nificant percentage of Modes I and II and thus cannot be ne-
glected.

For collinear cracks subjected to normal pressure and situated
in the interior of homogeneous layers with large dimensions, only

Fig. 17 Normalized stress intensity factors KI /KI
per and KII /KI

per

at the tips of vertically stacked cracks at different distances
from the top surface of rectangular layers with the fiber rotation
angles �=0 deg, 90 deg subjected to a uniform external pres-
sure. The normalized vertical crack spacing is d /2a=0.5 and
the crack-to-layer length ratio is 
=L /2a=10.
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Fig. 18 Normalized stress intensity factors KI /KI
10, KII /KI

10 and KIII /KI
10 at the tips of diagonally stacked cracks at different dis-

tances from the top surface of rectangular layers subjected to a uniform vertical displacement as a function of the fiber rotation
angle �: „a…-„c… spatially uniform �; „d…-„f… functionally graded �. The normalized vertical crack spacing is d /2a=0.5, and the
crack-to-layer length ratio is 
=L /2a=30.
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Mode I is present, which also does not depend on the layer’s
degree of anisotropy induced by rotation. Bringing two collinear
cracks closer to the top surface produces coupling of the three
modes observed in the single crack case, with the concomitant
increases in stress intensity factors and dependence on layer’s
orientation caused by the inner crack tip interaction. Coupling of
the three modes also occurs for vertically offset cracks subjected
to normal pressure in the interior, which becomes significant with
decreasing height to length aspect ratio of the layer.

The present solution’s capability of multiple crack analysis
makes possible the investigation of fundamental problems in the
micromechanics of heterogeneous materials with damage, such as
the effect of boundary conditions on the stress intensity factors of
cracks situated at different distances from a multilayer’s surface.
The boundary layer effect is important in multilayers with verti-
cally stacked cracks subjected to homogeneous normal tractions
and may propagate far into the multilayer’s interior. However, the
impact of layer orientation appears to be limited to the surface’
immediate vicinity. Vertically offsetting multiple cracks to pro-
duce an echelon array in a multilayer subjected to homogeneous
displacement boundary conditions results in substantial depen-
dence of the stress intensity factors on layer orientation in the
interior, in contrast with the vertically stacked cracks. This depen-
dence can be controlled by orientational grading of the layers
containing individual cracks.

The present solution quantifies the heretofore undocumented
impact of finite dimensions and layer anisotropy due to a unidi-
rectional fiber-reinforced layer’s orientation in composite multi-
layers under different loading and boundary conditions. These ef-
fects may play a critical role in defect criticality of advanced
multilayered structures when cracks are situated close to vertical
and horizontal boundaries, as demonstrated herein.
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In this paper some properties of the stochastic linearization
method applied to nonlinear systems excited by parametric
Gaussian white noises are discussed. In particular, it is shown
that the linearized quantities, obtained by the author in another
paper by linearizing the coefficients of the Ito differential rule
related to the original system, show the same properties found by
Kozin with reference to nonlinear system excited by external white
noises. The first property is that these coefficients are the true
linearized quantities, in the sense that their exact values are able
to give the first two statistical moments of the true response. The
second property is that, in the stationary case and in the field of
the parameter estimation theory, they represent the maximum like-
lihood estimates of the linear model quantities fitting the original
nonlinear response. �DOI: 10.1115/1.1940665�

1 Introduction
Stochastic linearization technique is the most versatile method

for analysis of general nonlinear systems and structures under
random excitations. In almost 50 years since its first virtually
simultaneous presentations by Booton �1� and Kazakov �2�, it has
been widely applied in the study of various nonlinear systems for
which it is not possible to obtain an exact solution. For example
the monograph by Roberts and Spanos �3� and many review pa-
pers written in these last years may confirm this success.

The basic idea of the stochastic linearization technique is to
replace the original nonlinear system by a linear one in such a way
that the difference between the two systems is minimized in some
statistical sense. In this way, the quantities appearing in the lin-
earized system involve unknown response statistics which, in the
case of Gaussian excitations, are evaluated approximating the re-
sponse as a Gaussian process.

In the case of nonlinear systems excited by purely external
Gaussian excitations, it was shown that, if the error between the
original and the linearized systems is evaluated on the motion

equations, the stochastic linearization method gives the same re-
sults as the Gaussian closure method �4�. Moreover, Kozin evi-
denced that, in the case of purely external white noise excitations,
the linearized quantities obtained by the stochastic linearization
applied in this sense represent the true linearization quantities �5�.
But, as a matter of fact, this concept was first introduced by
Caughey �6�, even if he did not use the term true, and then it was
discussed by Crandall �7�, too. This concept evidences that, if the
exact value of the statistical quantities appearing in the linearized
quantities is known, the linearized quantities are able to give the
exact first two statistical moments of the response. At last, Kozin
himself showed another important property of these linearized
quantities in the field of the parameter estimation theory �8�: if the
response of a nonlinear system is observed and is fitted by a linear
model, then, in the stationary case, the maximum likelihood esti-
mates of the linear quantities converge to the quantities obtained
by the stochastic linearization. This is an important result from
both a theoretical and a practical point of view.

When parametric type excitations act on the nonlinear systems,
the applications of the stochastic linearization technique are based
on different approaches leading to different results. For example,
Chang and Young linearized the motion equations �9�, while Wu
linearized the Ito differential equation �10�. Falsone �11� showed
that only the linearization on the coefficients of the Ito differential
rule can originate a stochastic linearization technique able to give
the same results of the Gaussian closure method. Moreover he
found the corresponding linearized quantities.

The aim of the present paper is to verify if the linearized quan-
tities obtained in �11� for parametric white noise excitations are
characterized by the same two important properties revealed by
Kozin in the case of purely external white noise excitation. This
means that the answers will be given to the following two ques-
tions: �1� are the linearized quantities found in �11� true, in the
Kozin sense?, �2� are they the maximum likelihood estimates of
the linear model quantities fitting the original nonlinear response?

2 The True Linearization Coefficients
Let us consider a nonlinear system excited by a parametric

Gaussian white noise excitation that, in terms of state variable
coordinates, is governed by the following differential equation:

Ẋ�t� = f�X�t�� + g�X�t��W�t� �1�

where W�t� is such that E�W�t��=0; E�W�t+��W�t��=q����, E�·�
being the mean operator, ��·� the Dirac delta function and q the
white noise intensity.

Let us suppose using the stochastic equivalent linearization for
finding the approximate solution of Eq. �1�. In a previous work
�11� it was shown that in this framework a fundamental role is
played by the coefficients of the Ito differential rule; this rule can
be written as
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d��X�t�,t� =
���X�t�,t�

�t
dt + ��X

T ��X�t�,t��dX�t�

+
1

2
��x

T�2���X�t�,t��g�2��X�t��qdt �2�

where ��X�t� , t� is a vector function differentiable with respect to
t and twice differentiable with respect to X, �x is the vector op-
erator whose ith entry is � /�Xi, dX�t� is the first member of the
Ito differential equation taking into account the Wong–Zakai cor-
rection term and the exponent into the square brackets indicates
the power exponent made following the rule of the Kronecker
algebra �12�, that is:

C�2� = C � C �3�

C being a generic matrix and the symbol � indicating the Kro-
necker product.

In the above-cited work it was shown that the stochastic equiva-
lent linearization gives the same results as the Gaussian closure
method, for parametric excitation, too, only if the linearization is
made on the coefficients of the Ito differential rule. In this way, it
was found that the nonlinear system must be replaced by a linear
one such that the corresponding Ito equation and Ito differential
rule are, respectively,

dY�t� = A�t�Y�t�dt + a�t�dt + b�t�dL�t� �4�

d��Y�t�,t� =
���Y�t�,t�

�t
dt + ��Y

T ��Y�t�,t��dY�t�

+
1

2
��Y

T�2���Y�t�,t��b̄�2��t�qdt �5�

where L�t� is the Wiener process related to W�t� and the linearized
terms are:

A�t� = �E�m�Y�t��YT�t�� − E�m�Y�t���E�Y�t��T��Y
−1�t�

a�t� = E�m�Y�t��� − A�t�E�Y�t��

b�t� = E�g�Y�t���

b̄�2��t� = E�g�2��Y�t��� �6�

�Y�t�=E�Y�t�YT�t��−E�Y�t��E�Y�t��T being the covariance ma-
trix of Y�t� and m�Y�t�� the corresponding drift term. As made in

�11�, even here it is important to note that b̄�2��t��b�2��t�.
Now we want to show that the above-considered linearized

terms are the true linear coefficients of the nonlinear system ex-
cited by a parametric white noise, where the significance of the
adjective true is the same as that given by Kozin in the case of
external excitation �5�, that is: we replace the vector Y�t� by the
vector X�t� into Eq. �6�, thinking of knowing the moments appear-
ing in them; then, if we evaluate the first two moments of the
correspondent linearized system, they are identical to the first two
moments of the true nonlinear system.

In fact, starting from the Ito differential rule related to the origi-
nal nonlinear system �1�, it is not difficult to verify that the dif-
ferential equations governing the first two moments of the true
response X�t� are:

Ė�X�t�� = E�m�X�t���

Ė�X�2��t�� = E�m�X�t�� � X�t�� + E�X�t� � m�X�t���

+ E�g�2��X�t���q �7�
Starting from Eqs. �4� and �5�, it is possible to find the differ-

ential equations governing the first two moments of the linearized
system, which are:

Ė�Y�t�� = A�t�E�Y�t�� + a�t�

Ė�Y�2��t�� = �A�t� � I + I � A�t��E�Y�2��t�� + a�t� � E�Y�t��

+ E�Y�t�� � a�t�b̄�2��t�q �8�

I being the identity matrix having the same dimension of X�t�. If
the expression of a�t� given in the second equation of Eq. �6� is
replaced in the first equation of Eq. �8�, we easily obtain:

Ė�Y�t�� = E�m�Y�t��� �9�

which has the same form of the first equation of Eq. �7�. This
means that if we know the true value of E�m�Y�t���, that is
E�m�X�t���, the first of the linearized equations �8� is able to give
the exact value of the true response first-order moments.

If the expression of a�t� and b̄�2��t� given in the second and
fourth equation of Eq. �6� are replaced into the second equation of
Eq. �8�, then this last one becomes:

Ė�Y�2��t�� = �A�t� � I + I � A�t���E�Y�2��t�� − E�Y�t���2��

+ E�m�Y�t��� � E�Y�t�� + E�Y�t�� � E�m�Y�t���

+ E�g�2��Y�t���q �10�

It is worth noting that:

E�Y�2��t�� − E�Y�t���2� = Vec��Y�t�� �11�

Vec�•� meaning vectorialized form of �•�, that is an operator giving
a vector built by all the columns of the matrix �•�, each placed
below the preceding �12�. Due to a fundamental property of the
Vec�•� operator, that is:

Vec�ABC� = �CT
� A�Vec�B� �12�

the first term of the second member of Eq. �10� can be rewritten as
follows �with the argument t omitted for simplicity�:

�A � I + I � A�Vec��Y� = Vec��YAT + A�Y�

= Vec��Y�Y
−T�E�YmT�Y��

− E�Y�E�mT�Y��� + �E�m�Y�YT�

− E�m�Y��E�YT���Y
−1�Y�

= E�Y � m�Y�� − E�Y� � E�m�Y��

+ E�m�Y� � Y� − E�m�Y�� � E�Y�
�13�

where the first equation of Eq. �6� and the symmetry of the matrix
�Y and of its inverse have been taken into account. If we now
replace Eq. �13� into Eq. �10�, the following differential equation
is obtained:

Ė�Y�2��t�� = E�m�Y�t�� � Y�t�� + E�Y�t� � m�Y�t���

+ E�g�2��Y�t���q �14�

that has the same form of the second equation of Eq. �8�. This
means that if we know the true values of E�m�Y�t�� � Y�t��,
E�Y�t� � m�Y�t��� and E�g�2��Y�t���, that are E�m�X�t�� � X�t��,
E�X�t� � m�X�t��� and E�g�2��X�t���, the second of the linearized
equations �8� is able to give the exact value of the true response
second-order moments.

The fundamental result obtained by the analysis presented in
this section is that the linearized terms given in the first, second,
and fourth equations of Eq. �6� are the true linearized terms for
nonlinear systems excited by parametric Gaussian white noise ex-
citations, in the same sense that Kozin gave to this adjective. It is
worth noting that this result can be obtained only if the lineariza-
tion of the system is made on the coefficients of the Ito differential
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rule. Any other kind of linearization, for example on the motion
equation or on the Ito differential equation, is not able to give this
result.

3 Parameter Estimation and Stochastic Equivalent
Linearization

In this section we will show that an important result, found by
Kozin �10� for external Gaussian white noise excitations, can be
extended to the case of parametric Gaussian white noise excita-
tions, too. That is, if we are fitting the true nonlinear system by a
linear model, in the stationary case, the maximum likelihood es-
timates of the coefficients for the assumed linear model converge
to the stationary values of the true linearized terms obtained in the
previous section.

The starting point for showing this important result is consid-
ering the Ito equation governing the linear model, that is:

dY�t� = ĀY�t�dt + ādt + b̄dL�t� �15�

The maximum likelihood estimate of ā from observation of
�Y�t� ; t� �0,T�� can be simply obtained by integrating this last
equation into �0,T�, that is:

�
0

T

dY��� = Ā�
0

T

Y���d� + āT + b̄�
0

T

dL��� �16�

from which, by taking into account that we are observing the true
response �X�t� ; t� �0,T��, it is possible to find:

ā =
1

T�0

T

m�X����d� +
1

T�0

T

g�X����dL��� − Ā
1

T�
0

T

X���d�

− b̄
1

T�
0

T

dL��� �17�

If we assume that a stationary ergodic measure exists for Eq. �1�,
then each term in Eq. �17� possesses an almost sure limit. As a
consequence, the maximum likelihood estimate of the vector ā is
given as:

āML = limT→�ā = E�m�X�� − ĀMLE�X� �18�

E�m�X�� and E�X� being the stationary values of E�m�X�t��� and

E�X�t��, respectively, while ĀML is the maximum likelihood esti-

mate of the matrix Ā. In writing Eq. �18�, account has been taken
of the ergodicity of X�t� and of the fact that the second and the
fourth integrals appearing in Eq. �17� possess a zero limit.

In order to find ĀML, let us multiply each term of Eq. �15� by
YT�t� and let us integrate into �0,T�, obtaining:

�
0

T

dY���YT��� = Ā�
0

T

Y���YT���d� + ā�
0

T

YT���d�

+ b̄�
0

T

YT���dL��� �19�

If now Y�t� is replaced by X�t�, each term of Eq. �18� is divided
by T and the limT→� is applied, then we obtain:

ĀMLE�XXT� = E�m�X�XT� − āMLE�XT� �20�

which, by taking into account Eq. �18�, allows us to obtain ĀML as
follows:

ĀML = �X
−1�E�m�X�XT� − E�m�X��E�XT�� �21�

It is important to note that when parametric excitations act on the
system, in order to model the true nonlinear system by a linear

one, it is fundamental to find the estimate of the maximum like-

lihood of the term b̄�2�, besides of the terms ā and Ā. With this
aim in mind, the Ito equation with reference to Y�2��t� is written.
Then, by taking into account Eq. �15�, we write:

dY�2��t� = �Ā � I + I � Ā�Y�2��t�dt + �ā � I + I � ā�Y�t�dt

+ �b̄ � I + I � b̄�Y�t�dL�t� + b̄�2�qdt �22�

Integrating this equation into �0,T�, replacing Y�t� by X�t�, apply-
ing the limT→� and taking into account Eqs. �18� and �21�, lastly,
after some algebra, the following result is obtained:

�b̄�2��ML = E�g�2��X�� �23�
The results given in Eqs. �18�, �21�, and �23� evidence that the
maximum likelihood estimates of the terms characterizing the lin-
ear system modeling the true nonlinear one are the stationary val-
ues of the quantities obtained in the previous section when the
stochastic linearization method is applied on the coefficients of
the Ito differential rule. Hence, these results can be considered as
an extension of the Kozin results to the case of nonlinear systems
excited by parametric Gaussian white noise excitations and char-
acterized by a nonzero mean response.

4 Conclusions
In this paper two important properties of the stochastic linear-

ization technique applied to nonlinear systems excited by purely
external Gaussian white noises have been extended to the case in
which the Gaussian white noise excitations are parametric. These
two properties, found by Kozin, are: �1� the quantities obtained by
the application of the stochastic linearization are the true linear
quantities, in the sense that their exact value is able to give the
first two statistical moments of the true response; �2� these quan-
tities are the maximum likelihood stationary estimates of the co-
efficients characterizing the linear model fitting the original non-
linear system in a parameter estimation analysis.

It has been shown that, in the parametric white noise excitation
case, these properties are confirmed only if the stochastic linear-
ization is applied as made by the author in a previous paper, that
is by linearizing the coefficients of the Ito differential rule related
to the nonlinear system.
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Local contact behavior of composite powders has been investi-
gated by using the finite element method. In previous analyses of
such problems it has in general been assumed that one of the
powder materials is rigid while the other deforms at loading as in
such a case self-similarity prevails. This is a very good approxi-
mation for ceramic/metallic composites but may not be so when
the composite consists of two materials of roughly equal hardness.
An approximate compliance formula for describing this feature is
proposed showing good agreement with corresponding finite ele-
ment results for representative cases. �DOI: 10.1115/1.2165240�

1 Introduction
Powder compaction is a production method used for making

details with complex material compositions and geometries. The
principle of compaction has been known for several thousand
years ��3000 B.C.� when the Egyptians used iron powder and
compressed it into tools. Today several materials such as metals,
alloys, polymers, and ceramics are used to produce compacted
parts. One major advantage with this method is that the produced
parts are near-net shaped and need little or no machining at all.
This is a particularly advantageous feature for ceramics since ma-
chining is a difficult task. An additional advantage with composite
powders is the possibility to design the material behavior as for
example is done with low- and high-alloy steels including differ-
ent volume fractions of copper, nickel, and molybdenum with fer-
rous material.

The process of compacting powder can be divided into three
stages at least from a mechanical point of view. Filling and pack-
ing a container with powder is the first stage. Cold or hot pressing
from an initial relative density near 0.60–0.70 vol % powder up
to a relative density between 0.80 and 0.90 is the second stage,
often called stage I. This stage is characterized of powder sur-
rounded by open pores and each contact site between powders can
be treated independently. The final stage �stage II�, where addi-
tional pressure is applied up to almost full density, is characterized
by pores that are sealed off and consequently the material behav-
ior is more or less like a porous solid.

It is obvious that if the mechanical behavior can be analyzed in
advance the costly experimental phase can be reduced before se-
rial production of details and parts. There are several ways of
analyzing the powder compaction process. Stage II is frequently

studied using a macroscopic constitutive equation for porous sol-
ids and is often based upon phenomenological assumptions, see,
e.g., Refs. �1–3�. Packing and stage I are more often analyzed
using a micromechanical approach. With such an approach the
local interaction and deformation between individual particles is
determined and summarized over the entire compound in order to
predict the global behavior. Several writers have addressed this
issue over the last decades and a better understanding of the me-
chanical behavior at compaction has been achieved. Thirty years
ago, Wilkinson and Ashby �4� presented a pioneering study where
they investigated hot isostatic compaction of powders with power
law creep behavior. Following the achievements from theoretical
and experimental studies by Fischmeister and co-workers, �5,6�,
an almost complete theory for isostatic compaction was formu-
lated by Helle et al. �7�. Further progress was made for more
general loading situations in Refs. �8–10�. All of these investiga-
tions, however, have resulted in equations that are partly phenom-
enological and further investigations are needed in order to
achieve a more consistent micromechanical description of the
powder compaction problem.

In a micromechanical approach to model powder compaction, a
major issue is the mechanical behavior at contact between two
powder particles. This matter was studied in detail by Storåkers et
al. �11� and Storåkers �12�, based on numerical results from analy-
ses of spherical indentation of solids described constitutively by
power law creep, plastic flow theory, and general viscoplasticity
�13–16�. With these results at hand Larsson et al. �17� analyzed
cold and hot compaction of monolithic powders followed by a
more general study of composite powders by Storåkers et al. �18�.
The latter study, even though comprehensive, was still based on
some simplifying approximations and further investigations were
needed. One of these �simplifying� approximations concerns the
assumption of affine motion of particles at compaction. In short,
affine motion means that the motion of each particle is prescribed
by the applied macroscopic strain field. This issue was, among
other things, studied by Heyliger and McMeeking �19�, Skrinjar
and Larsson �20�, and Martin et al. �21� using the discrete element
method and by Procopio and Zavaliangos �22� using a multipar-
ticle finite element method. These authors showed that initially in
the powder compaction process, during packing and stage I, rear-
rangement, in addition to plastic flow, is an important mechanism
of densification. Other mechanisms identified to control the den-
sification are power law creep and diffusional flow. However,
these latter mechanisms will be more dominant at hot compaction.

The previously discussed contact law developed by Storåkers et
al. �11� and Storåkers �12� and used in Refs. �20,21,23,24�, is
valid if the two particles indenting each other are constitutively
described by the same form of hardening behavior or if one of the
particles is assumed rigid. Accordingly, the contact law is valid for
compaction of monolithic powders or compaction of for example
a metallic material and a ceramic powder �being much harder than
the metal powder�. However, if the two materials indenting each
other are, say, power law materials with different strengths and
exponents, the contact law mentioned above will not be applicable
as emphasized by, e.g., Storåkers et al. �18�. Composite materials
consisting of two or more deformable metals are used today since
the capability of tailoring the mechanical properties of the final
part is possible and of course desirable. Powder mixtures are the
easiest way to provide the amount of alloying materials, e.g., cop-
per, nickel, and/or molybdenum together with ferrous materials
even though powders of pre-alloyed materials are also very
common.

To the best of the authors’ knowledge the accuracy of the
above-discussed contact law in a general situation has not yet
been investigated and the intention is to examine this issue. The
investigation will be performed using the finite element method
�FEM� and, in particular, the commercial multi-purpose program
ABAQUS �25� will be utilized. An alternative approximate for-
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mula describing contact in a more general situation at dissimilar
powders is proposed and compared to results from straightforward
FE-simulations.

2 Similarity Analysis: Exact and Approximate
It was stated above that at contact between two deformable

particles of dissimilar materials, the advantage of self-similarity of
contact solutions no longer applies in general. It is believed
though that such solutions can still serve as useful tools when
attempting to determine approximate, but accurate, force-
indentation relations also in a more general situation. For this
reason, the presentation of the present analysis, with such a rela-
tion as a goal, starts off by discussing the most important details
of self-similarity solutions.

Indentation of a rigid sphere into a rigid-plastic material was
analyzed by Biwa and Storåkers �16� based on plastic flow theory.
The material was assumed to be power-law hardening and in
uniaxial form given by

� = �0�1/m �1�

where the strength parameter �0 and the power law exponent m
are material parameters. In a corresponding multiaxial form von
Mises yield condition was used.

It was found that the shape of the pressure distribution becomes
stationary and only depends on the power law exponent m. In
particular the relation between the contact contour radius, a, and
indentation depth, h, becomes self-similar, and reduces to

a2 = 2c2R0h �2�

where the indentation invariant is c2=c2�m� and R0 is the relative
curvature.

From high accuracy finite element calculations, i.e., Ref. �11�,
the relation

c2 = 1.43e�−0.97/m� �3�
has been specified by Fleck et al. �26�.

As a result the force-depth relation may be written as

h =
1

c2� F

��0R0
2�2m/�2m+1�

R0 �4�

where F is the indentation force and �=2�2m−1�/2m3�m−1�/m�. For
clarity, it should be mentioned that in all cases to follow, solutions
based on Eq. �4� will be referred to as the self-similarity solution.

Remembering that the pressure distribution only depends on the
exponent m, it was found by Storåkers et al. �11� that in case of
two spheres in contact with different radii, R1, R2, and of different
strength, �1, �2, but of the same m, Eqs. �2� and �4� may be
generalized for contact of two plastic spheres by introducing

1

R0
=

1

R1
+

1

R2
�5�

and

1

�0
m =

1

�1
m +

1

�2
m �6�

in conformity with Hertz theory for dissimilar linear elastic solids,
and notation according to Fig. 1.

From similarity arguments it is then intuitively clear that the
deformed contact region will still be spherical with Hertzian cur-
vatures

1

R01
=

1

R1
−

1

R

1

R02
=

1

R2
+

1

R
�7�

and to be shown shortly that

1

R
= � 1

R1
− ��2

�1
�m 1

R2
	
���2

�1
�m

+ 1	 �8�

where R is defined by the curvature change at deformation as in
Fig. 1.

If two solids have different power law exponents, m1, m2, then
the individual pressure distributions will not be conformal and
self-similarity and stationarity will be lost. If it is assumed, how-
ever, that the deformed contact region will not deviate much from
a spherical surface, the combined approach from two dissimilar
spheres may by Eqs. �4� to �7� provide an estimate as

h =
1

c1
2� F

�1�1
� 1

R1
−

1

R
�2	2m1/�2m1+1�� 1

R1
−

1

R
�−1

+
1

c2
2� F

�2�2
� 1

R2
+

1

R
�2	2m2/�2m2+1�� 1

R2
+

1

R
�−1

�9�

in obvious notation where R, the curvature due to deformation,
may be determined from Eqs. �2� and �4�–�8� as

� F

�1�1
� 1

R1
−

1

R
�2	2m1/�2m1+1�� 1

R1
−

1

R
�−2

= � F

�2�2
� 1

R2
+

1

R
�2	2m2/�2m2+1�� 1

R2
+

1

R
�−2

�10�

The combination of Eqs. �9� and �10� then provides an approxi-
mate force-depth relation for dissimilar spheres. In case of mono-
lithic contact, m1=m2=m, the relation is exact and as already
forecast Eq. �10� reduces to Eqs. �8� and �9� to Eq. �4� using the
composite forms in Eqs. �5� and �6�.

3 Numerical Analysis
The present numerical analysis concerns the mechanical behav-

ior at initial and intermediate contact between two spherical par-
ticles with different material properties. Both spheres are de-
scribed constitutively by classical von Mises elastoplasticity. The
analysis conducted here is restricted to frictionless normal inden-
tation as has been shown by Carlsson et al. �27� and Larsson and
Storåkers �28� that compliance due to friction is almost negligible
at normal indentation. The resulting axisymmetric boundary value

Fig. 1 Schematics of the two particle problem
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problem is solved using the finite element method based on the
commercial finite element program ABAQUS �25�. The finite el-
ement mesh for the case of two particles with equal radii where all
symmetries have been accounted for is shown in Fig. 2 and con-
sists of 6889 four-noded axisymmetric elements and 7466 nodes.
In addition, large deformation theory was taken into account in all
numerical calculations. The mesh was made denser toward the
center of the contact region as can be seen in Fig. 2. In order to
verify the accuracy of the results, a mesh with double density was
used for selected cases and the results indicate that no further
refinement of the mesh is necessary. A comparison with the well-
known solution from Hertz elastic contact theory �29� was also

conducted for a linear elastic material and the results from the FE
model were in excellent agreement with the theoretical solution
with a difference of less than 1% for global contact variables.
Accordingly, these findings gave some definite confidence in the
FE model.

A strict power law material behavior �pertinent to rigid plastic-
ity� according to Eq. �1� is not available in the presently used
version of ABAQUS �25�. Instead, the strain-hardening behavior
of elasto-plastic materials was modeled using a power law relation
according to

� = �y + �0�p
1/m �11�

where �y is the initial flow stress, �0 and m are material param-
eters introduced above, and �p is the �effective� plastic strain. In
this investigation, materials with hardening exponents m=3, 5, 10,
and � were analyzed �the limiting case m=� corresponding to
ideal plasticity�. Four representative materials were considered at
first with details according to Table 1.

4 Results
This investigation studies the local contact behavior of compos-

ite powders and the results presented concern indentation of two
spherical particles with different material behavior. Several mate-
rials have been investigated and chosen in order to give a repre-
sentative view of the behavior at contact between dissimilar pow-
ders in practical situations. Initially, it was thought advisable to
investigate whether or not and at what circumstances the finite
element calculations based on the strain-hardening behavior in Eq.
�11� could reproduce the self-similarity results in Eq. �4�. Accord-
ingly, contact between two spheres of the same material was in-
vestigated. This was done initially for power law materials A, B,
C, and D in Table 1 and the results are shown in Fig. 3 where the
normalized indentation force, F / ��R0

2�0�, is depicted as function
of the normalized indentation depth, h /R0, and compared to the
corresponding self-similarity solution, Eq. �4�. The radii of the
two spheres are equal here and in the sequel. For the results per-
tinent to Eq. �4�, the indentation invariant c2 is determined from
Eq. �3�. Indentation is analyzed up to 0.01h /R0 remembering that
stage I compaction is of immediate interest here. Clearly, the
agreement between the four sets of results from FE simulations

Fig. 2 FE mesh for analysis of contact between two particles
with equal radii

Table 1 Material parameters used in the FE calculations

Material E �GPa� �y �MPa� �0 �MPa� m

A 455 50 1044 3
B 455 50 310 5
C 455 50 124 10
D 455 50

¯ �

Fig. 3 „—…, FE results and „- - -… self-similarity solutions at contact between
particles of the same materials, A–D
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and the self-similarity solution, Eq. �4�, is good giving some fur-
ther confidence as regards the accuracy of the numerical proce-
dure and, indeed, also of the self-similarity solution.

The influence of effects of elasticity and large deformation on
the self-similarity solution has recently been investigated in detail
by Mesarovic and Fleck �30�. In particular as regards the results
from the present perfectly plastic material D, Mesarovic and Fleck
�30� found in similar circumstances that the self-similarity solu-
tion is relevant for h /R�0.015 and E /�0�103, say.

With the results in Fig. 3 a foundation is now set to consider
contact between two spheres of dissimilar material. In Fig. 4 the
normalized indentation force, F / ��R0

2�1�—here and in the follow-
ing �1 is the strength parameter of material A in Table 1—is
depicted as a function of the normalized indentation depth, h /R0,
at contact between material A �m=3� and materials B–D �m=5,
10, and ��, respectively. The radii of the spheres are equal and the
indentation invariant, c2, is determined from Eq. �3�. The results
from the similarity approximation pertinent to mixed contact are
also depicted in Fig. 4 and as may be seen, the results from the
finite element calculations are quite satisfactory with a maximum
deviation of less than 9%. When it comes to details of combina-
tion A–D, with m=3 and m=�, respectively, separation of the
indentation depth, h, into two parts shows that the deformation of
the perfectly plastic material in this case is six to seven times as
high as that of the strain-hardening material. Accordingly, material
A can roughly be considered as rigid indenting a soft particle and
true self-similarity will prevail. Such a situation is very common
at contact between a strain-hardening and a perfectly plastic par-
ticle. Increasing the yield stress of the perfectly plastic material
will give essentially the same behavior as above.

Finally, also some results relevant to contact between spheres of
different size were carried out. In this case the contact combina-
tion A-B was investigated with a size ratio R1 /R2=2. In short,
very good agreement was found between results from FE results
and the similarity approximation, but for brevity this feature is not
shown explicitly here.

5 Conclusions
Contact between dissimilar spheres was studied theoretically

and numerically using the finite element method. In particular,

force-indentation depth relations were determined with especially
micromechanical investigations of composite powder compaction
in mind. Based on previous self-similarity solutions for contact
between spheres of similar materials, as well as presently per-
formed finite element results, an approximate compliance formula
describing contact in a general situation has been derived. Finite
element simulations of representative cases have been performed
indicating that the proposed formula produces high accuracy
predictions.

One particular area where the present results are directly appli-
cable concerns analyses of powder compaction using the discrete
element method. In such a case, the approximate formula provides
a simple and useful tool for describing the local contact behavior
when studying compaction of composite powders.
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Localized bending waves in a thin elastic orthotropic cantilever
plate reinforced by a rigid rib are studied. A condition under
which the edge waves can be eliminated is determined. The con-
dition requires that the rib have a certain minimal stiffness. Such
waves are time-varying, and have spatially nonuniform bending
perturbations that are localized in the proximity of free surface
and are quickly decaying to zero. A general solution is presented
and the particular case of an isotropic reinforced plate is shown.
An inverse method is described for identifying the elastic proper-
ties of the rib. �DOI: 10.1115/1.2165242�

1 Introduction
The study of localized bending waves in an elastic isotropic

semi-infinite plate was presented first in Ref. �1� and further de-
veloped in Refs. �2–4�. The theory of flexural edge waves was
given in Ref. �1� using Kirchhoff’s plate theory. The existence of
a flexural wave, guided by the free edge of a semi- infinite isotro-
pic elastic thin plate, was also demonstrated. Such waves have
properties analogous to a Rayleigh wave on an elastic half-space,
in that they decay exponentially with distance from the edge. The
flexural edge wave is also predicted by Mindlin’s plate theory and
this prediction agrees with measured data. The propagation of
flexural waves guided by the tip of a wedge or the free end of a
ridge on a substrate has been studied in some depth �3–6�. Using
classical plate theory �3� an explicit expression was obtained for
the speed of a flexural edge wave. The dispersion relation for a
flexural plate edge wave was found in Ref. �4� by taking the limit
of a wedge with zero internal angle. In Ref. �5� the existence and
behavior of these waves is discussed in detail and the same wave
speed as in Ref. �3� is obtained.

In this paper the plate is modeled as an orthotropic cantilever
with one edge being free from mechanical stresses and reinforced
with rigid rib, the opposite edge is fixed, while the other two
edges of the plate are assumed to be simply supported. The rib is
modeled as an elastic beam. The dynamic problem for the elastic
bending waves is considered and the necessary and sufficient con-
ditions for the existence of localized bending waves are derived.
These conditions depend on elastic plate and rib properties. Some

inverse problems of determining the beam stiffness depending on
the plate bending vibration frequencies are also considered. Fi-
nally, the effect of the localized bending waves and the implica-
tions of the proposed solution method are presented and pertinent
conclusions are outlined. The paper may provide some insight
toward developing a procedure to detect damage in a rib for more
complex systems.

2 Governing Equations and Boundary Conditions
Consider a rectangular elastic plate in a Cartesian reference

system �x ,y ,z�, so that the plane �xOy� coincides with the plate
middle surface and z is the coordinate along the thickness of a
plate, x� �0, � �, y� �0,b�, z� �−h ,h�, see Fig. 1.

Based on Kirchhoff’s hypothesis, the plate bending vibration
equation can be written as �7�

D11
�4w

�x4 + 2�D11 + 2D66�
�4w

�x2 � y2 + D22
�4w

�y4 + 2�h
�2w

�t2 = 0 �1�

Here w�x ,y� is the plate mid-surface normal displacement, 2h is
the plate thickness, � is the density of the plate material, and D11,
D12, D22, D66 are physical constants characterizing plate stiffness.

In the case of isotropic plate D11=D22= �2/3�Eh3 / �1−�2�;
D12=D11� ; D66= �1/3�Eh3�1+��, where E and � are the elastic
modulus and Poisson’s ratio, respectively.

The stress couples Mx and H can be expressed as

Mx = − D11
�2w

�x2 − D12
�2w

�y2 �2a�

H = − 2D66
�2w

�x � y
�2b�

while the normal and generalized normal stress resultants Nx, Ñx
acting at x=const can be cast as

Nx = −
�

�x
�D11

�2w

�x2 + �D12 + 2D66�
�2w

�y2 � �2c�

Ñx = −
�

�x
�D11

�2w

�x2 + �D12 + 4D66�
�2w

�y2 � �2d�

On plate edges, e.g., y=0,b, the simply supported boundary
condition has been assumed, implying that

w = 0,
�2w

�x2 = 0
�2w

�y2 = 0 �3�

The edge x=0 is supposed to be free from mechanical stresses and
reinforced with a rigid rib, which is modeled as an elastic beam.
On this edge, the following boundary conditions are applied �8�

Mx = A0
�

�y
� �2w

�x � y
� Ñx = D0

�4w

�y4 �4�

Here, A0 and D0 are the twist and bending stiffness of the beam,
respectively.

Taking into account Eqs. �2� and �4�, the boundary conditions at
x=0 can be written as

D11
�2w

�x2 + D12
�2w

�y2 + A0
�3w

�x � y2 = 0 �5a�

�

�x
�D11

�2w

�x2 + �D12 + 4D66�
�2w

�y2 � + D0
�4w

�y4 = 0 �5b�

As a limiting case, if the plate is semi-infinite, the attenuation
�localization� condition for the out of plane displacement w�x ,y , t�
as x→� is
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lim
x→�

w�x,y,t� = 0 �6�

The governing equation �1� is solved in conjunction with the
boundary conditions, Eqs. �3�–�5�, while accounting for the at-
tenuation condition, Eq. �6�. This solution, if it exists, will deter-
mine the localized bending waves near the edge x=0. It is worth
noting that the study of localized bending waves in an elastic
isotropic semi-infinite plate with a free edge �Mx=Nx=0� is given
in Ref. �1�.

3 Localized Bending Waves Solution for Orthotropic
Cantilever Reinforced Plate

We assume the solution of the governing equation �1�, so as to
satisfy to boundary conditions �3�, is of the form

wn�x,y,t� = Gn�x�sin��ny�exp�i�t� �7�

where � is the vibration frequency, �n=�n /b ,n=1,2 ,3 , . . . .
The function Gn�x� satisfies the ordinary differential equation

d4G

dx4 − 2��2 + �3��n
2d2G

dx2 + �1�n
4�1 − �n

2�G = 0 �8a�

and boundary conditions at x=0

d2G

dx2 − �2�n
2G + 	�n

2dG

dx
= 0 �8b�

d3G

dx3 − �n
2��2 + 4�3�

dG

dx
+ 
�n

4G = 0 �8c�

where the following dimensionless parameters have been
introduced

�1 =
D22

D11
�2 =

D12

D11
�3 =

2D66

D11
�n

2 =
2�h�2

D22�n
4

	 =
A0

D11

 =

D0

D11

It is assumed that Eq. �8� has solutions satisfying the attenuation
condition Eq. �6�, �9,10�

Gn�x� = C1n exp�− �np1x�

+ C2n exp�− �np2x� where �p1 � 0,p2 � 0� �9�

The parameters p1 and p2 are as follows

p1 = 	�2 + �3 + 	��2 + �3�2 − �1�1 − �n
2� �10a�

p2 = 	�2 + �3 − 	��2 + �3�2 − �1�1 − �n
2� �10b�

From Eqs. �10a� and �10b� the condition for the dimensionless
frequency �n of localized waves is

�*
2 � �n

2 � 1 �11a�

where

�*
2 = 1 −

��2 + �3�2

�1
�11b�

As is well-known, Refs. �9,11�, for any orthotropic material �1
� ��2+�3�2 always, while for any isotropic material �1
��2
+�3�2 implying that �*
0.

Satisfying the boundary conditions �5�, a system of simulta-
neous algebraic equations has to be solved in terms of the un-
known constants Cn1 ,Cn2

Cn1�p1
2 + 	�np1 − �2� + Cn2�p2

2 + 	�np2 − �2� = 0 �12a�

Cn1�p1
3 − ��2 + 2�3�p1 − 
�n� + Cn2�p2

3 − ��2 + 2�3�p2 − 
�n� = 0

�12b�

Therefore the dimensionless frequency �n can be derived from the
nontrivial solution of the system �12�

�p2 − p1�K*��n� = 0 �13a�

where

K*��n� 
 �p1��n�p2��n��2 + 2�3p1��n�p2��n� + ��
�n

+ 	�np1��n�p2��n���p1��n� + p2��n��� + 
	�n
2 − �2

2

�13b�

When p1= p2 we have C1n=C2n=0, and consequently Gn�x�
0
When p1�p2, Eq. �13a� implies that

K*��n� = 0 for �n � ��*,1� �14�

On the upper and lower bounds of �n we have

K*��n���n=�*
= �3�3�3 + 4�2� + 2	�3 + �2�
�n + 	�n��3 + �2��

� 0 �15a�

K*��n���n=1 = 
	�n
2 + 
�n

	2��2 + �3� − �2
2 �15b�

The derivative of the function K*��n� is found

dK*

d�n
= − 2�n��p2 − p1�



��2 + �3��1 + �1
�n + 2�1	�np1p2 + 2�1�3�p1 + p2�

4p0p1p2
�

− 2�n��1 +
�1	�n�p1 + p2�

p1p2
� � 0 �16�

where p0 = 	��2 + �3�2 − �1�1 − �n
2�
	�n

2 + 
�n
	2��2 + �3� − �2

2

� 0. �17�

From Eq. �16� it follows that the function K*��n� is monoto-
nous decreasing in �n� ��* ,1�. Based on Eqs. �14�–�16� and the
property of the function K*��n� the necessary and sufficient con-
dition of the existence of localized waves is extracted from Eq.
�15b�


	�n
2 + 
�n

	2��2 + �3� − �2
2 � 0 �18�

When the rib is absent, i.e., 
=	=0, the condition of Eq. �18�
always holds, while the presence of a rigid rib can eventually
eliminate the localized wave. Equation �18� also indicates a cut-
off wavelength in the y-direction, therefore this theory can only
predict waves of short wavelength.

Fig. 1 Model of a cantilever plate with one free and rib rein-
forced edge
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4 Isotropic Plate With Rectangular Square Cross Sec-
tion Rib

For an isotropic plate ��1=1,�2=� ,�3=1−�� Eq. �13� can be
written as

1 − �n
2 + 2�1 − ��	1 − �n

2 + �
�n + 	�n
	1 − �n

2��	1 + �n
2

+ 	1 − �n
2� + 
	�n

2 − �2 = 0 �19�

while Eq. �18� changes to


	�n
2 + 	2
�n − �2 � 0 �20�

Next, we will consider a plate with a rectangular cross section rib
beam.

For such a rib the twist and bending stiffness, A0 and D0, are

A0 �
9a4E0

4
D0 =

4a4E0

3
�21�

where a is the half-width of a square rib cross section, while E0 is
its elastic modulus. Recasting Eq. �20� in the form

n2�2a8

b2h6 �E0

E
�2

+
	2�1 − �2�n�na4

bh3

E0

E
− �1 − �2�2�2 � 0 �22�

the localized waves can be eliminated if the condition

�a4

bh3 �E0

E
� �

	2

2
�1 − �2��	1 + 2�2 − 1� �23�

is fulfilled.
In Fig. 2 the condition for the existence of localized bending

waves in an isotropic rib reinforced plate for various plate thick-
nesses is shown. Poission’s ratio has been assumed to be 0.3,
while b=100 mm. It appears that localized bending waves can be
eliminated by selecting the reinforcement appropriately. Larger
domains for localized bending waves are expected for larger plate
thicknesses.

5 Identification of Rib Elastic Properties
The rib elastic proprieties can be identified via an inverse ap-

proach. Based on Eq. �13� for localized vibration we can investi-

gate an inverse problem of identification of rib elastic proprieties
using frequencies obtained from experimental data �12,13�.

From Eq. �13� it follows that if two frequencies, for example
the first and second modal frequencies of the system under con-
sideration, are known then the elastic properties of the rib, i.e., the
twist and bending stiffness of the beam �parameters 	 and 
,
respectively� can be determined in the following way.

We define the twist and bending stiffness of the beam as

	 =
A0

D11
�24a�


 =
D0

D11
�24b�

Assuming that the first two frequencies �1 ,�2 are known, the
parameters 	 and 
 can be determined by solving the following
simultaneous system of equations

�
�1 + 	�1p11p21��p11 + p21� + 
	�1
2 = �2

2 − �p11p21�2 − 2�3p11p21

�25a�

�
�2 + 	�2p12p22��p12 + p22� + 
	�2
2 = �2

2 − �p12p22�2 − 2�3p12p22

�25b�

where the following notations are used p11
 p1��1� , p21

 p2��1� , p22
 p2��2� , p12
 p1��2�.

6 Conclusions
A study of the localized bending wave in a thin elastic ortho-

tropic cantilever plate reinforced by a rigid rib is presented. A
general solution is given and the particular case of an isotropic
reinforced plate is analyzed. The bending vibration equation is
solved in conjunction with appropriate boundary conditions and
an avenue to identify the rib elastic proprieties through an inverse
approach is described.
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Fig. 2 Condition for the existence of localized bending waves
in an isotropic rib reinforced plate, b=100 mm
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The modulation characteristics of the turbulent wall shear stress
and longitudinal intensities in the inner layer are experimentally
investigated in an unsteady channel flow wherein the centerline
velocity varies in time in a sinusoidal manner. The fluctuating wall
shear stress and velocity signals are temporally filtered and sub-
sequently phase averaged. It is shown that the outer structures
corresponding to the low spectrum range have a constant time lag
with respect to the centerline velocity modulation. The inner ac-
tive structures, in particular those with a frequency band contain-
ing the mean ejection frequency of the corresponding steady flow
dominate the dynamics of the near-wall unsteady turbulence. The
structures respond to the imposed shear oscillations in a complex
way, depending both on their characteristic scales and the thick-
ness of the oscillating shear zone in which they are
embedded. �DOI: 10.1115/1.2166650�

Unsteady turbulent shear flows are encountered in many prac-
tical situations in aerohydrodynamics, aeroacoustics or biofluid
dynamics. Past research on pulsed pipe or channel flows was first
focused on the eventual effects of the forced velocity oscillations
on the time-mean flow and second on the modulation characteris-
tics of the oscillating velocity field and the near-wall turbulence.
There is now an established consensus that:

• The time-mean flow is unaffected by the imposed unsteadi-
ness even in the presence of large imposed amplitudes and
frequencies that may cause reverse flow near the wall.

• In the imposed high-frequency regime, the oscillating shear
is confined in the low buffer layer and leads to the coexist-
ence of a purely oscillating viscous Stokes flow with an
unaffected time-mean flow.

• The turbulence cannot follow the rapid imposed unsteadi-
ness when the time period becomes comparable with the
median time scale of the near-wall turbulence. The turbulent
shear stresses become frozen during the oscillation cycle
under these circumstances.

Despite significant advances in the understanding and modeling
of forced internal wall flows, there is still some lack in under-
standing the reaction of the fine turbulence structure to imposed
time periodical shear �1�. One of the questions that arise concerns
the spectral characteristics of unsteady near-wall turbulence. We
partly investigated these points in �2� by determining the impact
of the unsteadiness on the inner and outer layer structures but only
in the low buffer layer. We extend and discuss detailed results in
this paper in the entire inner layer.

The experiments were performed in the unsteady water channel
described in detail in �3�. The centerline velocity was held con-

stant and equals Ūc=17.5 cm/s. This corresponds to a friction
velocity of ū�=0.85 cm/s and a Reynolds number based on the

half-height of the channel of Reh= Ūch /�=8800. The imposed
amplitude was 20% of the centerline velocity throughout the

whole study. The imposed frequency in wall units f+= f�� / ū�
2�,

where � is the cinematic viscosity, varied by a factor of 24 from
f+=2�10−4 to f+=60�10−4. Hereafter, ��+ will designate vari-
ables normalized by the viscosity and time mean shear velocity.
The imposed frequency range investigated here covers ls

+=38−7
in terms of the frequency parameter ls

+=�1/�f+, which is the
viscous Stokes length normalized by l�=� / ū�. The wall shear
stress and the velocity measurements were performed by means of
a flush-mounted TSI-1268 W hot film at the wall and a TSI
1276-10 W hot film located in the flow. Further details are pro-
vided in Tardu and Vezin �2�.

The classical triple decomposition is used. A quantity q is de-
composed into a mean q̄, an oscillating q̃, and fluctuating q� com-
ponent. The angle brackets designate the phase average, i.e., �q�
= q̄+ q̃. The modulation characteristics of �q� are described by the
amplitude Aq̃ and phase �q̃ of the fundamental mode. The relative
amplitude aq̃=Aq̃ / q̄ is also introduced for convenience.

In a way similar to Naguib and Wark �4�, we use here three
digital zero-phase shift filters; namely, Filter 0 with bandpass in
wall units �f0

+=0–0.0045, Filter 1 �bandpass �f1
+

=0.0055–0.022�, and Filter 2 ��f1
+=0.0316–0.0482� to identify

outer �Filter 0� and inner �Filters 1 and 2� structures and their
characteristics. The filtering is processed through well-designed
zero-phase shift 128-point finite impulse response digital filters.
The reader is referred to �2� for further important details and re-
lated discussions.

The phase shifts of the filtered signals are denoted by ��i

=�iu�ũ�−�ũ with i=0, 1, and 2 and the corresponding time lags by
�ti=��i /2�f+. The time lag of the modulation of the contribution
of the outer structures is remarkably constant in the viscous layer
at y+�50 with �t0,u�ũ�

+ �−75 as shown in Fig. 1. In the low log-

layer, however, the behavior of �t0,u�ũ�
+ changes appreciably. The

phase shift �0,u�ũ�−�ũ at y+=100 decreases first sharply in the
imposed low-frequency range f+�0.002, becomes subsequently
constant and joins the line �t0,u�ũ�

+ �−75 only in the imposed
high-frequency regime. Thus, the response time of the outer struc-
tures is constant in the viscous layer y+�50 with a repercussion at
the wall of �t0,����

+ �−125 independent of the imposed frequency.

The time-lag difference �t0,���̃�
+ −�t0,u�ũ�

+ �−50 may be expressed

as �t+=−y0
+ /v0

+ where y0 and vc stand, respectively, for the dis-
tance to the wall of the outer edge of the viscous layer and a
characteristic wall normal velocity. One finds �t+=−50 by taking

y0
+=50 and vc

+= ��v�v� / ū��y+=y0
+ �1, i.e., by assuming that the

convection velocity is approximately equal to the rms wall normal
velocity at the outer edge of the viscous layer. An equivalent
assumption could be that the wall normal convection velocity in
the viscous layer is about vc= ū�, as suggested by Eckelmann �5�.
The constancy of �t0,u�ũ�

+ at y+�50 points to the difference of the

diffusion mechanism governing the passive eddies and the �u�u��
modulation. The lack of the diffusion of the outer eddies in the
sense we discussed before is in concordance with the idealized
inviscid picture of the passive structures.

Figures 2�a� and 3 show how the phase shift of the turbulent
longitudinal intensity modulation related to the active eddies dif-
fers from the passive ones in the entire inner layer. At a given y+,
the phase shift �1,u�ũ�−�ũ decreases linearly until a critical im-
posed frequency fcr

+ beyond which �1,u�ũ�−�ũ is constant, or

equivalently the time lag �t1,u�ũ�
+ = ��1,u�ũ�−�ũ� /2�f+ decreases

with f+ through �t1,u�ũ�
+

�1/ f+. This is clearly perceptible in Fig.

2�a�. The critical frequency depends upon y+. The best physical
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way to scale it is to use the Stokes length ls and relate the phe-
nomena to the oscillating shear layer whose thickness is 2ls. Fig-
ure 2�b� shows the distribution of yscr

+ =y+ / lscr
+ versus y+. It is seen

that yscr
+ �2.5, which is only slightly larger than the oscillating

shear thickness, except in the low buffer region. Consequently, the
response time of the structures 1 is constant in the oscillating
shear layer and decreases in the plug flow zone wherein
�ũ /�y�0.

The phase shift of the active structures 2 is small and remark-
ably independent of the imposed frequency in the viscous layer
y+�50 �Fig. 3�. In the high logarithmic layer �2,u�ũ�−�ũ is
closely similar to �1,u�ũ�−�ũ of the structures 1.

The relative amplitudes scaled with local aũ are shown in Fig. 4

versus the imposed frequency at four different y+ positions. The
first striking observation emerging from these results is the sharp
decrease of a2,u�ũ� /2aũ from large values of about 1 in the low-
frequency regime. The decrease is roughly linear from the quasi-
steady limit to some f2,cr

+ as shown by broken lines in Fig. 4. The

resulting critical Stokes lengths l2,scr
+ =��f2,cr

+ are reported in Fig.
2�b� at the right. It is seen that l2,scr

+ increases in the buffer layer
until it reaches a plateau region in the log layer. The relative
amplitude of the large scale a0,u�ũ� and inner structures a1,u�ũ� do
not significantly differ from the global response au�ũ� in the entire
inner layer.

The response of the inner eddies are recapitulated in Fig. 5. The
active eddies 2 are closely related to the quasi-streamwise vortices
�QSV�, which are the major coherent structures in the buffer layer.
They contribute mostly to the low- speed streak formation and
Reynolds shear stress in steady �4� and unsteady flows �2�. The
peculiar behavior of the cutoff in the response of the active struc-
tures 2 to imposed unsteadiness can tentatively be explained by
the reaction of the QSV to the oscillating shear �ũ /�y. The QSV
are entirely embedded in the oscillating shear zone when y+

=ys
+ls

+�30, which correspond to the top of the structures. Since
�ũ /�y is constrained into ys

+�2, this condition implies a critical
Stokes length of l2,scr

+ �15, which corresponds well to the
asymptotic limit in Fig. 2�b�. The majority of the QSV’s are in
contact with the oscillating shear under this condition and the
�u�u��2 modulation extends to the log-layer. The active structures
response is fast with small phase shifts �2,u�u�

˜ −�ũ in this zone
�y+�50� and �u�u��2 diffuses away resulting in larger time lags
�Fig. 3�. Only smaller structures in their initial stage of develop-
ment are directly affected by �ũ /�y when the latter is constrained
into y+�15 as it is shown at left in Fig. 5. Thus, the oscillating
shear has to be concentrated sufficiently close to the wall, to
stimulate the unsteady reaction of these merely immature QSV
and to activate the �u�u��2 modulation in the low buffer layer. This
explains the occurrence of a minimum at l2,scr

+ �7 in Fig. 2�b�.
The active structures 1 are larger scale eddies that extend be-

yond the buffer layer. Their time lag is constant in the oscillating
shear zone and decreases in the plug layer. Figure 2 suggests that
their size may reach 80–100 wall units. The inactive eddies are
large-scale motions associated mainly with pressure-strain corre-
lations and turbulent diffusion according to Bradshaw �6�. They
do not contribute to the shear stress production. They conse-
quently scale with integral variables in steady flow contrarily to
the active eddies scaling with the inner wall variables. The outer

Fig. 1 Phase shift and corresponding time lag of the modula-
tion of the longitudinal turbulent intensity depicted by Filter 0
at several wall normal positions in the inner layer

Fig. 2 Modulation characteristics of the inner structures de-
picted by Filter 1. „a… Time lag, „b… critical nondimensional fre-
quency and wall normal distance beyond which the phase shift
is constant „left… together with the critical Stokes length „right…
related to the inner structures 2 „see the text….

Fig. 3 Phase shift of the inner structures depicted by Filter 2
versus the frequency at different wall normal locations in the
inner layer
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velocity scale in unsteady flows is the centerline velocity oscilla-
tions �UC� and the inner velocity scale is the shear velocity modu-
lation �u��. Thus, outer and inner scaling would respectively imply
au�ũ��2auc̃, �u�u�

˜ ��uc̃ for the passive structures and au�u�
˜

�2au�̃=a�̃, �u�u�
˜ =��̃ for the inner ones. Neither the amplitudes

ai,u�u�
˜ nor the phases �i,u�u�

˜ obey these relationships except in the
quasi-steady regime. The structures respond to the imposed shear
oscillations in a complex way, depending both on their character-
istic scales and on the thickness of the oscillating shear zone in
which they are embedded.

The results presented here may be useful in the development of
multiple-scale modeling in unsteady flows �7�. Consider to this
end the modulation of the kinetic energy equation

�k̃

�t
= P̃ − 	̃ −

�

�y
	1



v�p̃� + v�k̃ − �

�k̃

�y

 �1�

where P̃ and 	̃ are, respectively, the production and dissipation,
the term under the bracket stands for the turbulent and viscous
diffusion, and where the second-harmonic production is neglected.

We may write k̃= k̃Outer+ k̃Inner with k̃Outer= k̃0, k̃Inner= k̃1+ k̃2 since

these components fall into nonoverlapping parts of the spectrum.
According to the results presented in this paper and the related
discussion we made in the previous sections, the outer passive
eddies contribute mainly to the turbulent diffusion. Thus,

�k̃0

�t
= −

�

�y
	1



v�p̃� + v�k̃
 �2�

The classical multi-scale cascade equations are written as

�k̃1

�t
= P̃1 − 	̃1 + �

�2k̃1

�y2 �3�

�k̃2

�t
= P̃2 − 	̃2 + 	1 + �

�2k̃2

�y2 −
�k̃0

�t
�4�

where the coupling between the inner structures 1 and 2 takes
place through the dissipation and the passive eddies intervene in
the turbulent diffusion. The idea here is to couple these equations
with the relationships based on the rapid distortion model in a way
similar to Mankbadi and Liu �8� and Tardu and Da Costa �1�
wherein substantial details can be found. The closure in these
models is based on the effective strain parameter ��eff�. The struc-
tural parameters such as the ratio of the Reynolds shear stress to
the kinetic energy are related to ��eff� by −�u�v�� / �k�=F���eff��,
where the function F is obtained by the bench data of the steady
turbulent flow. The transport equation for ��eff� in its simplest
form is

���ef f�
�t

= −
��ef f�
Td�y�

+
��u�
�y

�5�

where Td�y� is the rapid distortion time scale. We propose here to
combine Eqs. �3� and �4� with each individual transport equation
for the effective strain parameters, i.e.,

���ef f�i

�t
= −

��ef f�i

Tdi�y�
+

��u�
�y

�6�

where i=0–2 stands for the outer �0� and inner structures �1 and
2� and Tdi�y� are the corresponding rapid distortion time scales.

The latter can easily be estimated from the time lags �t
i,u�u�̃

+
in-

vestigated in this study. It is believed that this strategy can lead to
more efficient modeling of the complex near-wall turbulent un-
steady flows.
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